首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure based on liquid chromatography-mass spectrometry (LC-MS) is described for determination of 6-monoacetylmorphine, morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine, cocaine, benzoylecgonine and cocaethylene in meconium using nalorfine as the internal standard. The analytes are initially extracted from the matrix by methanol (6-monoacetylmorphine, morphine, codeine, cocaine, benzoylecgonine and cocaethylene) or 0.01 M ammonium hydrogen carbonate buffer (morphine-3-glucuronide, morphine-6-glucuronide). Subsequently a solid-phase extraction with Bondelut Certify columns (6-monoacetylmorphine, morphine, codeine, cocaine, benzoylecgonine and cocaethylene) or ethyl solid-phase extraction columns (morphine-3-glucuronide, morphine-6-glucuronide) was applied. Chromatography was performed on a C(8) reversed-phase column using a gradient of acetic acid 1%-acetonitrile as a mobile phase. Analytes were determined in LC-MS single ion monitoring mode with atmospheric pressure ionisation-electrospray (ESI) interface. The method was validated in the range 0.005-1.00 microg/g using 1 g of meconium per assay and applied to analysis of meconium in newborns to assess fetal exposure to opiates and cocaine.  相似文献   

2.
A solid-phase extraction (SPE) procedure was developed for the quantification of nalbuphine in a small volume (500 μl) of human plasma with subsequent assay by high-performance liquid chromatography (HPLC) and electrochemical detection using 6-monoacetylmorphine as internal standard. Plasma was extracted using Bond Elute certified extraction columns (LCR: 10 ml, 130 mg) after conditioning with methanol and 0.2 M Tris buffer (pH 8). Elution was performed with a CH2Cl2-isopropanol-NH4OH (79:20:, v/v). The organic phase was evaporated to dryness and resuspended in HPLC mobile phase containing 2% isopropanol. Linearity was assessed over the 5–100 ng/ml concentration range and a straight line passing through the origin was obtained. Experiments with spiked plasma samples resulted in recoveries of 95±5.4% and 98±6.2% for nalbuphine and 6-monoacetylmorphine, respectively. The optimal pH conditions for the SPE were found at pH 8. The intra-day coefficients of variation (C.V.) for 5, 40, and 100 ng/ml were 5.3, 3.0 and 2.3% (n=8) and the inter-day C.V.s were 7.7, 3.2 and 3.5% (n=10), respectively. The detection limit for 500 μl plasma sample was 0.02 ng/ml and the limit of quantification 0.1 ng/ml (C.V.=12.4%). The ease of the proposed method of analysis, as well as its high accuracy and sensitivity allow its application to pharmacokinetic studies. A preliminary kinetic profile of nalbuphine after rectal administration in a pediatric patient is presented.  相似文献   

3.
A method for the separation of a mixture of opiates comprising pholcodine, 6-monoacetylmorphine, morphine, heroin, codeine and dihydrocodeine by capillary electrophoresis using a running buffer of 100 mM disodium hydrogenphosphate at pH 6 is described. The characteristics of an analytical method based on this separation for the determination of these drugs following extraction from urine and using levallorphan as internal standard are reported. Detection limits in the region of 10 ng cm−3 are achieved when using electrokinetic injection. A comparison is made of the sensitivity and reproducibility of electrokinetic and hydrodynamic injection for these drugs. Data are presented to show the results obtained when the proposed method is applied to urine spiked with all the above opiates and also to urine from a subject following consumption of dihydrocodeine and pholcodine. The concentrations found are compared with those obtained by LC.  相似文献   

4.
将吗啡、海洛因分别给予大鼠,建立成瘾动物模型,用气相色谱联用质谱(Gas chromatography-mass spectrometry)方法分析大鼠体毛、尿液中吗啡及6-单乙酰吗啡水平。结果显示:连续给药14天后检测分析,大鼠体毛中吗啡、6-单乙酰吗啡水平分别为2.64±0.9ng·ng·mg-1.88±0.6ng·mg·mg-1,大鼠尿液中吗啡、6-单乙酰吗啡水平分别为27.7±0.6μg·mL-1、5.2±0.2μg·mL-1,与对照组比,有显著性差异(P<0.01)。海洛因在动物体内主要代谢产物为吗啡和6-单乙酰吗啡。  相似文献   

5.
A sensitive, specific and reproducible method for the quantitative determination of methenolone in human hair has been developed. The sample preparation involved a decontamination step of the hair with methylene chloride. The hair sample (about 100 mg) was solubilized in 1 ml 1 M NaOH, 15 min at 95 degrees C, in presence of 1 ng testosterone-d3 used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase (Isolute C18 eluted with methanol) and a liquid-liquid (pentane) extraction. The residue was derivatized by adding 50 microl MSTFA-NH4I-2-mercaptoethanol (1000:2:5, v/v/v), then incubated for 20 ml at 60 degrees C. A 1.5-microl aliquot of the derivatized extract was injected into the column (HP5-MS capillary column, 5% phenyl-95% methylsiloxane, 30 m x 0.25 mm I.D., 0.25 microm film thickness) of a Hewlett-Packard (Palo Alto, CA, USA) gas chromatograph (6890 Series). Methenolone was detected by its parent ion at m/z 446 and daughter ions at m/z 208 and 195 through a Finnigan TSQ 700 MS-MS system. The assay was capable of detecting 1 pg/mg of methenolone when approximately 100 mg hair material was processed. Linearity was observed for methenolone concentrations ranging from 2 to 100 pg/mg with a correlation coefficients of 0.965-0.981. Intra-day and between-day precisions at 2, 10 and 25 pg/mg were 10.9-14.1% and 13.7-16.8%, respectively, with an extraction recovery of 97.6%. The analysis of a strand of hair obtained from two bodybuilders, revealed the presence of methenolone at the concentrations of 7.3 and 8.8 pg/mg.  相似文献   

6.
As part of an ongoing research program on the development of drug detection methodology, we developed an assay for the simultaneous measurement of cocaine, heroin and metabolites in plasma, saliva, urine and hair by solid-phase extraction (SPE) and gas chromatography—mass spectrometry (GC—MS). The analytes that could be measured by this assay were the following: anhydroecgonine methyl ester; ecgonine methyl ester; ecgonine ethyl ester; cocaine; cocaethylene; benzoylecgonine; cocaethylene; norcocaethylene; benzoylnorecgonine; codeine; morphine; norcodeine; 6-acetylmorphine; normorphine; and heroin. Liquid specimens were diluted, filtered and then extracted by SPE. Additional handling steps were necessary for the analysis of hair samples. An initial wash procedure was utilized to remove surface contaminants. Washed hair samples were extracted with methanol overnight at 40°C. Both wash and extract fractions were collected, evaporated and purified by SPE. All extracts were evaporated, derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) and analyzed by GC—MS. The limit of detection (LOD) for cocaine, heroin and metabolites in biological specimens was approximately 1 ng/ml with the exception of norcodeine, normorphine and benzoylnorecgonine (LOD = 5 ng/ml). The LOD for cocaine, heroin and metabolites in hair was approximately 0.1 ng/mg of hair with the exception of norcodeine (LOD = 0.3 ng/mg) and normorphine and benzoylnorecgonine (LOD = 0.5 ng/mg). Coefficients of variation ranged from 3 to 26.5% in the hair assay. This assay has been successfully utilized in research on the disposition of cocaine, heroin and metabolites in hair, plasma, saliva and urine and in treatment studies.  相似文献   

7.
A new method for determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in hair based on alkaline hair hydrolysis, extraction by iso-octane, combined derivatization with N,O-bis-(trimethylsilyl)-trifluoroacetamide and headspace solid phase microextraction of the extract residue, and gas chromatography-mass spectrometry was developed and evaluated. The limits of detection of the three compounds were 0.01-0.02 ng/mg. The method was routinely applied to more than 250 hair samples. In 77 positive samples, the concentrations ranged from LOD to 4.2 ng/mg for THC (mean 0.49 ng/mg), to 12.1 ng/mg for CBD (mean 0.37 ng/mg) and to 0.85 ng/mg for CBN (mean 0.12 ng/mg) using a sample amount of 30 mg. The frequently observed increase of the segmental drug concentrations from proximal to distal is explained by progressive accumulation in the hair shaft from sebum or side stream smoke.  相似文献   

8.
A method is described for the simultaneous determination of heroin (3, 6-diacetylmorphine, DAM) and its two active metabolites 6-acetylmorphine and morphine in blood by high-performance liquid chromatography using a normal-phase column and a UV detector at 218 nm. The compounds are stabilized in blood by rapid freezing and recovered by a multistep liquid—liquid extraction. The mobile phase is acetonitrile—methanol (75:25, v/v) buffered to apparent pH 7 with ammonium hydroxide and acetic acid. Usingl--acetylmethadol as an internal standard, UV detection and a 1-ml biofluid sample, the lower limit of sensitivity is 12.5 ng/ml. Commonly used narcotic analgesics including codeine, propoxyphene, meperidine, methadone and levorphanol do not interfere with the analysis. The method has been applied to blood samples from humans and rats. Extracts of blood from a patient who had received an intravenous dose of 14 mg of DAM contained DAM and both of its active metabolites.  相似文献   

9.
A procedure is presented for the detection in human hair of forensically relevant benzodiazepines, i.e. nordiazepam, oxazepem, bromazepam, diazepam, lorazepam, flunitrazepam, alprazolam and triazolam. The method involves decontamination of hair with methylene chloride, pulverization in a ball mill, incubation of 50 mg powdered hair in Soerensen buffer (pH 7.6) in the presence of prazepam-d5 used as internal standard, liquid-liquid extraction with diethyl ether-chloroform (80:20, v/v) and gas chromatography-mass spectrometry using negative chemical ionization after derivatization with, N,O-bis(trimethylsilyl)trifluoroacetamide plus 1% trimethylchlorosilane. The limits of detection for all benzodiazepines ranged from 1 to 20 pg/mg using a 50-mg hair sample. Coefficients of variation and extraction recoveries, ranging from 7.4 to 25.4% and 47.6 to 90%, respectively, were found suitable for a screening procedure. One hundred and fifteen samples were submitted to this screening procedure, and specimens tested positive for nordiazepam (0.20-18.87 ng/mg, n = 42) and its major metabolite oxazepam (0.10-0.50 ng/mg, n = 14), flunitrazepam (19–148 pg/mg, n = 31), lorazepam (31–49 pg/mg, n = 4) and alprazolam (0.3-1.24 ng/mg, n = 2). Bromazepam, diazepam and triazolam were not detected.  相似文献   

10.
A hydrophilic interaction liquid chromatography-time-of-flight mass spectrometry (HILIC-TOFMS) method for the quantification and confirmation of morphine (M), codeine (C), morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and codeine-6-glucuronide (C6G) is presented. The method was validated in terms of specificity, selectivity, extraction recovery, accuracy, repeatability, linearity and matrix effect. After a straightforward sample preparation by solid phase extraction (SPE) the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The HILIC technique provided good chromatographic separation which was critical for isomers M3G and M6G. The analytes were detected after electrospray ionization (ESI) in positive mode with mass accuracies below 2 mDa using a 5-mDa window. A measurement range of 50-5000 ng/ml was applied for calibration using deuterated analogs as internal standards. The precision of the method was 5.7% and 10.2% (RSD) within and between days, respectively. The applicability of the method was demonstrated with authentic urine samples known to contain codeine and/or morphine and their intact glucuronide conjugates. Identification of the analytes was based on in-source collision induced dissociation (ISCID), applying three diagnostic ions with accurate mass.  相似文献   

11.
A sensitive, specific and reproducible method for the quantitative determination of stanozolol in human hair has been developed. The sample preparation involved a decontamination step of the hair with methylene chloride and the sonication in methanol of 100 mg of powdered hair for 2 h. After elimination of the solvent, the hair sample was solubilized in 1 ml 1 M NaOH, 15 min at 95°C, in the presence of 10 ng stanozolol-d3 used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase (Isolute C18) and a liquid–liquid (pentane) extraction. After evaporation of the final organic phase, the dry extract was derivatized using 40 μl MBHFA–TMSI (1000:20, v/v), incubated for 5 min at 80°C, followed by 10 μl of MBHFBA, incubated for 30 min at 80°C. The derivatized extract was analyzed by a Hewlett-Packard GC–MS system with a 5989 B Engine operating in the negative chemical ionization mode of detection. Linearity of the detector response was observed for stanozolol concentrations ranging from 5 to 200 pg/mg with a correlation coefficient of 0.998. The assay was capable of detecting 2 pg of stanozolol per mg of hair when approximately 100 mg hair material was processed, with a quantification limit set at 5 pg/mg. Intra-day precision was 5.9% at 50 pg/mg and 7.8% at 25 pg/mg with extraction recoveries of 79.8 and 75.1%, respectively. The analysis of a 3-cm long hair strand, obtained from a young bodybuilder (27 year old) assuming to be a regular user of Winstrol (stanozolol, 2 mg), revealed the presence of stanozolol at the concentration of 15 pg/mg.  相似文献   

12.
Pentazocine (PZ) in rat hair and plasma was determined by HPLC-fluorescence detection with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a labelling reagent and cyclazocine (CZ) as an internal standard (IS). PZ and IS extracted from hair or plasma sample were derivatized with DIB-Cl and the resulted solution was cleaned up with solid phase extraction. The isocratic separation of DIB-PZ and -CZ within 20 min could be achieved by a Wakopak Handy-ODS column (250 x 4.6 mm i.d.) using a mobile phase composed of 0.1 mol/L acetate buffer (pH 6.2):acetonitrile (25:75, v/v). The detection limits of PZ at a signal-to-noise ratio of 3 for rat hair and plasma were 0.18 ng/mg and 0.57 ng/mL, respectively. Reproducible and precise results could be obtained by an IS method with RSD values less than 6.6% for within- and between-day measurements. The method was successfully applied for the monitoring of PZ levels in Zucker rat hair and plasma samples after a single administration of 25 mg/kg PZ. Moreover, incorporation rates of PZ into black and white hair of Zucker rat were evaluated.  相似文献   

13.
A rapid and selective assay of morphine and its 3- and 6-glucuronides in serum, based on high-performance liquid chromatography-electrospray mass spectrometry has been developed. The analytes and the internal standard, codeine or naltrexone, were subjected to solid-phase extraction, using ethyl solid-phase extraction columns, prior to chromatography. A reversed-phase column and a gradient mobile phase consisting of water and methanol were used. The mass spectrometer was operated in the selected-ion monitoring mode. The following ions were used: m/z 286 for morphine, m/z 300 for codeine, m/z 342 for naltrexone, and m/z 462 for morphine 3- and 6-glucuronides. The limit of quantitation observed with this method was 10 ng/ml morphine, 50 ng/ml morphine-6-glucuronide and 100 ng/ml morphine-3-glucuronide. The present method proved useful for the determination of serum levels of the parent drug and its metabolites in pain patients, heroin addicts and in morphine-treated mice.  相似文献   

14.
A method, using 0.2 ml of plasma, was designed for the simultaneous determination of morphine, 6-monoacetylmorphine, amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB, benzoylecgonine and cocaine. The drugs were analysed by LC-MS, after solid phase extraction in the presence of the deuterated analogues. Reversed phase separation on an Atlantis dC18 column was achieved in 10 min, under gradient conditions. The method was full validated, including linearity (2-250 ng/ml, r2>0.99), recovery (>50%), within-day and between-day precision and accuracy (CV and bias <15%), limit of detection (0.5 and 1 ng/ml) and quantitation (2 ng/ml), relative ion intensities and no matrix effect was observed. The procedure showed to be sensitive and specific, and was applied to 156 real cases from road fatalities (7.1% cases positive to cocaine and 0.6% to designer drugs).  相似文献   

15.
A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma has been developed and validated. Following liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column (150 mm × 2.0 mm, 3 μm) using formic acid:10 mM ammonium acetate:methanol (0.2:62:38, v/v/v) as mobile phase at a flow rate of 0.2 mL/min and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode. The method was linear for all analytes over the following concentration (ng/mL) ranges: codeine 0.08-16; ephedrine 0.8-160; guaiphenesin 80-16,000; chlorpheniramine 0.2-40. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method was successfully applied to a bioequivalence study in 6 healthy beagle dogs.  相似文献   

16.
The development of an immunoaffinity-based extraction method for the determination of morphine and its glucuronides in human blood is described. For the preparation of an immunoadsorber, specific antisera (polyclonal, host: rabbit) against morphine, morphine-3-glucuronide and morphine-6-glucuronide were coupled to 1,1′-carbonyldiimidazole-activated trisacrylgel and used for immunoaffinity extraction of morphine and its glucuronides from coronary blood. The resulting extracts were analysed by HPLC with native fluorescence detection. The mean recoveries from spiked blood samples were 71%, 76% and 88% for morphine, morphine-3-glucuronide and morphine-6-glucuronide, respectively. The limit of detection was 3 ng/g blood and the limit of quantitation was 10 ng/g blood for all three analytes. The results of the analysis of coronary blood samples from 23 fatalities due to heroin are presented.  相似文献   

17.
A positive chemical ionization gas chromatography-mass spectrometric method was validated to simultaneously quantify drugs and metabolites in skin collected after controlled administration of methamphetamine, cocaine, and codeine. Calibration curves (2.5-100 ng/skin biopsy) for methamphetamine, amphetamine, cocaine, norcocaine, benzoylecgonine, cocaethylene, norcocaethylene, anhydroecgonine methyl ester, morphine, codeine, and 6-acetylmorphine (5-100 ng/skin biopsy for ecgonine methyl ester and ecgonine ethyl ester) exhibited correlation coefficients >0.999 and concentrations +/-20% of target. Intra- and inter-run precisions were <10%. This procedure should be useful for postmortem analysis; data are included on drug concentrations in skin after controlled drug administration.  相似文献   

18.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

19.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

20.
For a pharmacokinetic-pharmacodynamic study in opioid tolerant patients, who were treated with heroin in combination with methadone, a liquid chromatographic assay with tandem mass spectrometry detection (LC-MS/MS) was developed for the simultaneous determination of heroin, methadone, heroin metabolites 6-monoacetylmorphine, morphine, and morphine-6 and 3-glucuronide and methadone metabolite EMDP. To detect any abuse of substances besides the prescribed opioids the assay was extended with the detection of cocaine, its metabolites benzoylecgonine and norcocaine and illicit heroin adulterants acetylcodeine and codeine. Heroin-d6, morphine-d3, morphine-3-glucuronide-d3 and methadone-d9 were used as internal standards. The sample pre-treatment consisted of solid phase extraction using mixed mode sorbent columns (MCX Oasis). Chromatographic separation was performed at 25 degrees C on a reversed phase Zorbax column with a gradient mobile phase consisting of ammonium formate (pH 4.0) and acetonitrile. The run time was 15 min. MS with relatively mild electrospray ionisation under atmospheric pressure was applied. The triple quadrupole MS was operating in the positive ion mode and multiple reaction monitoring (MRM) was used for drug quantification. The method was validated over a concentration range of 5-500 ng/mL for all analytes. The total recovery of heroin varied between 86 and 96% and of the heroin metabolites between 76 and 101%. Intra-assay and inter-assay accuracy and precision of all analytes were always within the designated limits (< or =20% at lower limit of quantification (LLQ) and < or =15% for other samples). This specific and sensitive assay was successfully applied in pharmacokinetic studies with medically prescribed heroin and toxicological cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号