首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of cGMP-dependent protein kinase with low concentrations of trypsin generates an enzyme fragment of 65 kDa which is fully active in the absence of cGMP. The fragment has a s20,w value of 4.6 S indicating that the active fragment is a monomer of 65 kDa. Trypsin removes the first 77 amino acids which contain the aminoterminal dimerization site and the autophosphorylation sites. The Km and Vmax values of the fragment for ATP and Kemptide were essentially the same as those for the native enzyme. The fragment binds 2 mol cGMP/mol fragment with affinities close to that of the native enzyme. However, binding of cGMP to these sites was non-cooperative and shows similar characteristics to the autophosphorylated native enzyme. These results indicate that the aminoterminal dimerization site of cGMP-dependent protein kinase and the autophosphorylation site, present in this part, control not only the activation of the enzyme but also the cooperative binding characteristics of the intact enzyme.  相似文献   

2.
C1-Tetrahydrofolate synthase is a multifunctional enzyme which catalyzes three reactions in 1-carbon metabolism: 10-formyltetrahydrofolate synthetase; 5,10-methenyltetrahydrofolate cyclohydrolase; 5,10-methylenetetrahydrofolate dehydrogenase. A rapid 1-day purification procedure has been developed which gives 40 mg of pure enzyme from 10 rabbit livers. The 10-formyltetrahydrofolate synthetase activity of this trifunctional enzyme has a specific activity that is 4-fold higher than the enzyme previously purified from rabbit liver. Conditions have been developed for the rapid isolation of a tryptic fragment of the enzyme which contains the methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. This fragment is a monomer exhibiting a subunit and native molecular weight of 36,000 in most buffers. However, in phosphate buffers the native molecular weight suggests that the fragment is a dimer. Conditions are also given whereby chymotryptic digestion allows the simultaneous isolation from the native enzyme of a large fragment containing the 10-formyltetrahydrofolate synthetase activity and a smaller fragment containing the dehydrogenase and cyclohydrolase activities. The large fragment is a dimer with a subunit molecular weight of 66,000. The small fragment retains all of the dehydrogenase and cyclohydrolase activities of the native enzyme. The large fragment is unstable but retains most of the 10-formyltetrahydrofolate synthetase activity. Km values of substrates for the two fragments are the same as the values for the native enzyme. The 10-formyltetrahydrofolate synthetase activity of the native enzyme requires ammonium or potassium ions for expression of full catalytic activity. The effect of these two ions on the catalytic activity of the large chymotryptic fragment is the same as with the native enzyme. We have shown by differential scanning calorimetry that the native enzyme contains two protein domains which show thermal transitions at 47 and 60 degrees C. Evidence is presented that the two domains are related to the two protein fragments generated by proteolysis of the native enzyme. The larger of the two domains contains the active site for the 10-formyltetrahydrofolate synthetase activity while the smaller domain contains the active site which catalyzes the dehydrogenase and cyclohydrolase reactions. Replacement of sodium ion buffers with either ammonium or potassium ions results in an increase in stability of the large domain of the native enzyme. This change in stability is not accompanied by a change in the quaternary structure of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The hybrid protein consisting of Tte DNA polymerase fragment and mutant Taq DNA polymerase (F667Y) fragment in the ratio 20 : 1 was constructed. Affinity of the modified enzyme (substitutions F669Y, V667I, and S692Q) to ddNTP was two orders higher than that of the wild type enzyme. The modified enzyme was used for sequencing DNA fragment with total deoxyguanosine and deoxycytidine content of 68%. In the polymerase chain reaction, the modified enzyme exhibits properties typical of the wild type Tte DNA polymerase.  相似文献   

4.
Beta-lactamase is a well established reporter for monitoring cellular events while chemiluminescence is the preferred read-out mode in high throughput screens. Here, we report the first chemiluminescent assay for beta-lactamase using beta-galactosidase based enzyme fragment complementation technology. The enzyme fragment complementation technology employs a large protein fragment called the enzyme acceptor and a small peptidic fragment called an enzyme donor. These fragments are inactive separately but recombine rapidly in solution to yield active beta-galactosidase detected by chemiluminescence or fluorescence. A cyclic enzyme donor comprising a substituted cephalosporin moiety is used as the lactamase substrate. The cyclic substrate does not complement with enzyme acceptor to yield active beta-galactosidase, but upon cleavage with lactamase yields the linear enzyme donor which complements readily with enzyme acceptor. This methodology has been exploited in a simple, sensitive, homogeneous cell based reporter gene assay to monitor G-protein coupled receptor activation in a microtitre plate with a chemiluminescent read out.  相似文献   

5.
Benzamidine, an inhibitor of serine proteases, was used as an affinity ligand for the purification of aspartyl protease from culture filtrate of Rhizomucor miehei. The two step purification protocol (ion-exchange and affinity chromatography) resulted in a homogenous enzyme preparation with seven-fold purification and a final recovery of 22%. The purified enzyme was free of brown pigmentation, a factor inherently associated with the enzyme; it was stable and active at acidic pH (optimum pH 4.1 for proteolytic activity and 5.6 for milk clotting activity). The significant positive characteristic of the enzyme is its comparatively lower thermostability; the enzyme was comparable to calf rennet in its properties of thermostability, milk-clotting to proteolytic activity ratio and sensitivity to CaCl2. Limited protease digestion of the purified enzyme with proteinase K yielded a 20kDa fragment as shown by SDS–PAGE. Native gel electrophoresis of the digest showed an additional peak of activity corresponding to the 20kDa fragment on SDS–PAGE, this fragment retained both milk-clotting and proteolytic activities. It was also inhibited by pepstatin A and hence it is presumed that this fragment contained the active site of the enzyme.  相似文献   

6.
The polA6 mutation is an allele of the polA gene of Escherichia coli which produces a DNA polymerase I species readily distinguishable from that produced by the wild type allele. Experiments described here show that this enzyme has an altered pH optimum for polymerization and a lower binding affinity for DNA. The defect clearly lies within the carboxyl-terminal large fragment of the enzyme produced by in vivo or in vitro proteolysis since the fragment has the same pH optimum for polymerization as the intact enzyme. The polA6 enzyme and its fragment are more sensitive to phosphate ions than the wild type polymerase, and the large fragment is less efficient at binding poly d(AT) in in vitro binding assays. Although the specific nucleolytic activity of the polA6 enzyme is higher than that of the wild type, there is no apparent alteration in pH optimum for the hydrolysis of eigher double or single stranded DNA.  相似文献   

7.
Calf thymus poly(ADP-ribose) synthetase (Mr = 120,000) is cleaved with papain into two fragments of M(r) = 74,000 and 46,000 and also split with chymotrypsin into two fragments of M(r) = 66,000 and 54,000. Each fragment purified to homogeneity is enzymatically inactive, but combined incubation of the 74,000 and 46,000 fragments in the presence of DNA restored 20% of the enzyme activity. In contrast, combined incubation of the 66,000 and 54,000 fragments does not restore any enzyme activity. In the former incubation, autopoly(ADP-ribosyl)ation reaction occurs exclusively on the 74,000 fragment. When each fragment is incubated with [adenine-U-14C]NAD in the presence of DNA and a catalytic amount of the native enzyme, poly(ADP-ribosyl)action occurs in the overlapped portion (22,000) of the 66,000 fragment and the 74,000 fragment. Nevertheless, the purified 22,000 fragment is a poor acceptor for poly(ADP-ribosyl)ation. The degree of poly(ADP-ribosyl)ation of the proteolytic fragments is significantly reduced by increasing NaCl concentration, probably due to the lack of the interaction between the enzyme fragments and DNA. These results, taken together, indicate that DNA is indispensable for the reconstitution of the catalytic activity as well as the poly(ADP-ribosyl)ation of the fragmented enzyme.  相似文献   

8.
Chymotryptic digestion of postsynaptic densities releases a soluble, catalytically active fragment of the alpha (Mr 50,000) subunit of the neuronal cytoskeletal calmodulin-dependent protein kinase II. The purified soluble form of the kinase likewise yields the fragment. Denaturation of the enzyme results in more extensive proteolytic degradation. 125I-Iodopeptide maps of the isolated catalytic portions of both forms of the enzyme are similar and are contained within the map of the isolated alpha subunit. Catalytic fragments of both forms of the enzyme comigrate on two-dimensional SDS-PAGE/isoelectric focusing with pI 6.7-7.2. The fragment phosphorylates microtubule-associated protein (MAP-2) but is not activated by Ca+2/calmodulin nor is it inhibited by trifluoperazine. Km values for MAP-2 and ATP are indistinguishable from those of the holoenzyme, while the Vmax is similar to that of the holoenzyme activated with Ca+2/calmodulin. Overlays of Western blots of fragment with 125I-calmodulin shows a loss of calmodulin binding. Both the number of phosphorylation sites and the ability to autophosphorylate are markedly reduced in the catalytic fragment. Evaluation of the hydrodynamic parameters of the purified fragment yielded Mr value of 25,600 with a frictional ratio (f/f0) of 1.12; the Mr value determined by SDS-PAGE was 30,000. Thus, the catalytic fragment appears to represent an activated form of the kinase with a monomeric, globular structure unlike the native enzyme which exhibits oligomerization and cytoskeletal association. These results are consistent with a tertiary structure for the calmodulin-dependent protein kinase that contains distinct domains responsible for catalytic activity, regulation by calmodulin, cytoskeletal association and the multimeric organization of enzyme subunits.  相似文献   

9.
The intact, 100 kd microsomal enzyme and the 53 kd catalytic fragment of rat HMG-CoA reductase are both phosphorylated and inactivated by the AMP-activated protein kinase. Using the catalytic fragment, we have purified and sequenced peptides containing the single site of phosphorylation. Comparison with the amino acid sequence predicted from the cDNAs encoding other mammalian HMG-CoA reductases identifies this site as a serine residue close to the C-terminus (Ser872 in the human enzyme). Phosphopeptide mapping of native, 100 kd microsomal HMG-CoA reductase confirms that this C-terminal serine is the only major site phosphorylated in the intact enzyme by the AMP-activated protein kinase. The catalytic fragment of HMG-CoA reductase was also isolated from rat liver in the presence of protein phosphatase inhibitors under conditions where the enzyme is largely in the inactive form. HPLC, mass spectrometry and sequencing of the peptide containing Ser872 demonstrated that this site is highly phosphorylated in intact liver under these conditions. We have also identified by amino acid sequencing the N-terminus of the catalytic fragment, which corresponds to residue 423 of the human enzyme.  相似文献   

10.
A method for preparation of a catalytically active fragment of bovine lung angiotensin-converting enzyme (ACE) has been developed. It includes limited proteolysis of the full-length somatic form of the enzyme by trypsin. The resulting fragment corresponds to the N-terminal domain of angiotensin-converting enzyme. The influence of chloride and sulfate anions on the enzymatic activity of this fragment has been investigated, and kinetic parameters for hydrolysis of synthetic tripeptide substrates catalyzed by the N-domain of ACE have been determined. Comparison of these parameters with those obtained for full-length somatic bovine ACE suggests that in the bovine somatic ACE molecule active centers located in various domains may function interdependently.  相似文献   

11.
Alanyl-tRNA synthetase of 115K daltons from Bombyx mori was cleaved into two fragments of 62K and 47K daltons by trypsin. The 47K fragment was active in aminoacylation of tRNA, whereas the 62K fragment was inactive. The 47K and 62K fragments were found to be located at the N- and C-terminal ends, respectively, in the intact enzyme. The intact enzyme was protected from trypsin-attack by the cognate tRNA. The Km value of the 47K fragment for tRNA was 22 microM which is about 16-fold higher than that for the intact enzyme (1.4 microM). The molecular activities of the fragment and the intact enzyme were 2.2 s-1 and 16.8 s-1, respectively. This indicates that the 62K domain enhances affinity for tRNA and it is responsible for the full activity of tRNA aminoacylation. These results do not support the "covalently linked dimer" hypothesis, but indicate that the alanyl-tRNA synthetase is a functional monomer consisting two large domains.  相似文献   

12.
Mild acid hydrolysis of phosphomannan secreted by the yeast hansenula holstii (NRRL Y- 2448) produces two phosphomannyl fragments which differ strikingly in their potency as inhibitors of pinocytosis of human β-glucuronidase by human fibroblasts. The larger molecular weight polyphosphomonoester fragment is 100,000-fold more potent an inhibitor of enzyme uptake than the smaller penta-mannosyl-monophosphate fragment. Binding to attached fibroblasts at 3 degrees C was much greater with the polyphosphomonoester fragment than with the pentamannosyl-monophosphate. The larger molecular weight fragment was also subject to adsorptive pinocytosis and was taken up by fibroblasts at a rate 30- fold greater than the rate of uptake of pentamannosyl-monophosphate. Evidence that the polyphosphomonoester fragment is taken up by the phosphomannosyl-recognition system that mediates uptake of lysosomal enzymes includes: (a) its pinocytosis is inhibited by the same compounds that competitively inhibit enzyme pinocytosis (mannose-6-phosphate and phosphomannan from saccharomyces cerevisiae mutant mnn-1); (b) alkaline phosphatase treatment greatly reduces its susceptibility to pinocytosis; (c) its pinocytosis is competitively inhibited by high-uptake human β-glucuronidase; and (d) this inhibition by high-uptake enzyme is dramatically reduced by prior treatment of the enzyme with alkaline phosphatase or endoglycosidase-H. Endoglycosidase-H treatment human β-glucuronidase dramatically reduced its susceptibility to pinocytosis by fibroblasts. The phosphomannosyl components of high- uptake enzyme released by endoglycosidase-H treatment were much less effective inhibitors of polyphosphomonoester pinocytosis than when present on the phosphomannyl-enzyme. These results suggest that high-uptake acid hydrolases may be polyvalent ligands analogous to the polyphosphomonoester mannan fragment whose pinocytosis depends on interaction of more than one phospho-mannosyl recognition marker with pinocytosis receptors on fibroblasts.  相似文献   

13.
Selective stabilization of either the N- or C-terminal half (by ligands binding to these regions) of rat brain hexokinase against partial denaturation with guanidine hydrochloride and subsequent digestion with trypsin has provided a means for isolating these regions, referred to as N fragment and C fragment, respectively, in quantities adequate for characterization. The N fragment (mol wt 52 kDa) is devoid of catalytic activity. In contrast, the C fragment (mol wt 51 kDa) has a specific activity of about 110 U/mg, nearly twice that (60 U/mg) of the intact 100-kDa enzyme, indicating that the kappa cat is virtually identical for both species. Unlike the parent enzyme, the C fragment is quite sensitive to inhibition by Pi (competitive vs ATP, noncompetitive vs Glc); sulfate and arsenate, but not acetate, inhibit with effectiveness similar to that seen with Pi. The Glc-6-P analog, 1,5-anhydroglucitol-6-P, also inhibits the C fragment (competitive vs ATP, uncompetitive vs Glc). Both N and C fragments bind to Affi-Gel Blue, an affinity matrix bearing a covalently attached analog of ATP, and are eluted by hexose 6-phosphates competitive with nucleotide binding to the parent enzyme. Based on the ability of various hexoses and hexose 6-phosphates (and analogs) to protect against guanidine-induced denaturation and subsequent proteolysis it is concluded that both fragments contain discrete sites for hexoses and hexose 6-phosphates, with specificities resembling those seen for the binding of these ligands to the parent enzyme. Synergistic interactions between the hexose and hexose-6-P binding sites, previously seen with the parent enzyme, are also observed with the C fragment but not the N fragment. The existence of binding sites for hexoses and hexose 6-phosphates on both halves conflicts with previous binding studies demonstrating a single hexose binding site and a single hexose 6-phosphate binding site on the intact 100-kDa enzyme, leading to the conclusion that one of each pair of sites must be latent in the intact enzyme, becoming manifest only in the isolated discrete halves. Several investigators have previously suggested that the 100-kDa mammalian hexokinases evolved by duplication and fusion of a gene encoding an ancestral 50-kDa Glc-6-P-insensitive hexokinase, similar to the present-day yeast enzyme, with sensitivity to Glc-6-P resulting from evolution of a duplicated catalytic site into a regulatory site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Tryptic digestion of (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle has previously been shown to cleave the enzyme initially into a 55,000-dalton fragment and a 45,000-dalton fragment. In the present study the two fragments are solubilized in sodium dodecyl sulfate (SDS) and separated by preparative polyacrylamide gel electrophoresis. The 45,000-dalton fragment is found to be a relatively nonselective, divalent cation-dependent ionophore when incorporated into an oxidized cholesterol membrane (BLM). Ionophoric activity of this fragment is inhibited by low concentrations of LaCl3, HgCl2, and various reducing agents. There appears to be one or two relatively inaccessible disulfide bonds in the 45,000-dalton fragment that are essential for transport. Addition of reducing agents inhibits the ionophoric activity of the succinylated undigested enzyme and the 45,000-dalton fragment, but has no effect on the 55,000-dalton fragment. These experiments imply that the 45,000-dalton fragment and the 55,000-dalton fragment are in a series arrangement in the membrane.  相似文献   

15.
Pyruvate:NADP+ oxidoreductase from Euglena gracilis, a homodimeric protein with a molecular weight of 309 kDa, is an iron-sulfur flavoenzyme that contains thiamin pyrophosphate (TPP). The functional structure of the enzyme was studied by a limited proteolysis experiment using trypsin. The evidence obtained shows that the enzyme consists of two functional domains, one of which contains an iron-sulfur cluster, which can be isolated as a homodimeric fragment of approximately 220 kDa by proteolysis. The other domain that contains FAD is released as a monomeric fragment of approximately 55 kDa. The pyruvate dehydrogenase reaction is still catalyzed by the large fragment when NADP+ is substituted by methyl viologen, while the small fragment retains a diaphorase-like electron-transfer activity from NADPH to MV. It is thus shown that pyruvate is oxidized in a CoA-dependent reaction to form CO2 and acetyl-CoA in the iron-sulfur domain, and that the two electrons formed are transferred to the FAD domain in which NADP+ is reduced. TPP is considered to be associated in the iron-sulfur domain. The NH2-terminal sequences of the enzyme and its proteolytic fragments reveal that the iron-sulfur domain occurs in the NH2-terminal side of the enzyme. For elucidation of the O2 instability of the enzyme, limited proteolysis was attempted in air. The tryptic fragment derived from the iron-sulfur domain, similar to the native enzyme, appears to be inactivated by direct contact with O2. In contrast, the FAD domain, when separated from the other domain, is quite stable in air, although the diaphorase activity decays when the native enzyme is exposed to O2.  相似文献   

16.
A recombinant fragment of the human receptor for epidermal growth factor containing both its extracellular domain and its membrane-spanning segment, when dissolved with Triton X-100, was observed to dimerize in response to addition of epidermal growth factor (EGF) even at the lowest concentration of this fragment that could be assayed (4 nM). Consequently, the dissociation constant for the dimer of this fragment is at least 10,000-fold smaller than that for dimers of soluble, recombinant forms of the extracellular domain lacking the membrane-spanning segment. The second-order rate constant for dimerization of the fragment containing the extracellular domain and the membrane-spanning segment was estimated to be greater than 0.3 nM(-1) min(-1), more than 10-fold that of the native enzyme under the same conditions. This result suggests that the cytoplasmic domain of the intact enzyme sterically hinders its dimerization. When EGF is removed from the dimer of the fragment, the rate constant for its dissociation is greater than 0.2 min(-1), more than 40-fold that of the native enzyme. This result suggests that interfaces between cytoplasmic domains of intact EGF receptor impart significant stabilization to the dimer of the enzyme.  相似文献   

17.
The ATPase core of a clathrin uncoating protein   总被引:33,自引:0,他引:33  
Chymotryptic digestion of bovine brain uncoating ATPase produced a 60-kDa fragment that was subsequently proteolyzed to 44 kDa. Loss of clathrin cage uncoating activity paralleled the conversion of the intact 70-kDa enzyme to the 60-kDa fragment, while clathrin binding activity was lost as the 60-kDa fragment was degraded to 44 kDa. This 44-kDa fragment has been purified to homogeneity and characterized as a clathrin-independent ATPase. The 44-kDa ATPase domain has been localized within the intact enzyme by the use of amino-terminal specific antibodies. This localization relates to the conserved nature of the 70-kDa heat shock protein family, of which bovine brain uncoating ATPase is a constitutively expressed member.  相似文献   

18.
An enzyme producing isoprimeverose from xyloglucan fragment oligosaccharides has been purified to the electrophoretically pure state from a commercial enzyme preparation of Aspergillus oryzae (Sanzyme 1000). The purified enzyme showed approximately 1,280-fold increase of the specific activity over the original preparation. The purified enzyme was shown to be an oligomeric protein consisting of two subunits, each of which had a molecular weight of 115,000. The enzyme showed the highest activity at pH 5.0 and 60 degrees C, and was stable in the pH range from 5 to 7 and at up to 50 degrees C. The isoelectric point of this enzyme was pH 3.9. The purified enzyme was highly specific for xyloglucan fragment oligosaccharides and split off isoprimeverose units from the non-reducing end of the backbone of the substrate.  相似文献   

19.
Summary The gene for the enzyme tyrosine phenol-lyase (TPL) was initially isolated on a 45 kbp fragment of Citrobacter freundii genomic DNA contained in a cosmid. Subsequent restriction enzyme digestion and sub-cloning resulted in the gene being contained on a 2.4 kbp DNA fragment.  相似文献   

20.
Summary Tryptic digestion of (Ca2++Mg2+)-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle has previously been shown to cleave the enzyme initially into a 55,000-dalton fragment and a 45,000-dalton fragment. In the present study the two fragments are solubilized in sodium dodecyl sulfate (SDS) and separated by preparative polyacrylamide gel electrophoresis. The 45,000-dalton fragment is found to be a relatively nonselective, divalent cation-dependent ionophore when incorporated into an oxidized cholesterol membrane (BLM). Ionophoric activity of this fragment is inhibited by low concentrations of LaCl3, HgCl2, and various reducing agents. There appears to be one or two relatively inaccessible disulfide bonds in the 45,000-dalton fragment that are essential for transport. Addition of reducing agents inhibits the ionophoric activity of the succinylated undigested enzyme and the 45,000-dalton fragment, but has no effect on the 55,000-dalton fragment. These experiments imply that the 45,000-dalton fragment and the 55,000-dalton fragment are in a series arrangement in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号