首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The prevalence of sustaining a fall is particularly high in children. Deficits in postural control and muscle strength are important intrinsic fall risk factors. Thus, the purpose of this study was to investigate the impact of balance training (BT) followed by detraining on postural control, plantar flexor strength, and jumping height in prepubertal children. Thirty grade 1 school children participated in this study and were assigned to either an intervention class (INT, n = 15, age 6.7 ± 0.5 years) or a control class (n = 15, age 6.6 ± 0.5 years). The INT participated in 4 weeks of BT (3 per week) integrated in their physical education lessons. Pre, post, and follow-up tests included the measurements of postural sway on a balance platform, maximal torque and rate of force development of the plantar flexors on an isokinetic device, and jumping height on a force platform. The significance level was set at p < 0.05. Balance training resulted in tendencies in terms of small to medium interaction effects yet not statistically significant improvements in postural sway (f = 0.14; p > 0.05), force production of the plantar flexors (f = 0.18; p> 0.05), and jumping height (f = 0.25; p> 0.05). Immaturity of the postural control system and deficits in attentional focus during practice of balance exercises could be responsible for the nonsignificant findings in this study. Thus, other training regimen (e.g., resistance training) should be applied alone or in combination with BT, which may have the potential to promote balance and strength in children.  相似文献   

2.
Can freshwater planktonic ciliates survive on a diet of picoplankton?   总被引:2,自引:0,他引:2  
Ciliate picoplanktivory was studied in two different freshwatersystems with abundant autotrophic picoplankton (APP): the eutrophic  相似文献   

3.
The question about the tolerance of microorganisms to high-temperature heating at the moments when fragments are launched from the surface rocks of cosmic objects and enter an atmosphere is among the major aspects of the problem of life transfer through cosmic space. The heating process in the course of such events was modeled here, and the survival of microorganisms was revealed by the example of two E.coli K12 mutant strains. Samples of these cultures in desiccated state were exposed to short heating pulses. Heating took place under extremely low pressure. It was experimentally showed that bacteria survive at a temperature up to 250°C with duration ~10 s under vacuum conditions, meanwhile the same heating under atmospheric pressure leads to complete sterilization.  相似文献   

4.
Energy budgets do balance—A comment on a paper by Wightman and Rogers   总被引:1,自引:1,他引:0  
Summary In a recently published energy budget for the larvae of the leafcutter bee (Wightman and Rogers, Oecologia (Berl.) 36 (1978) 245–257) respiration as estimated by respirometry amounted to only 67% of the respiration as estimated from the difference between assimilation and production. In this note it is shown that this discrepancy seems to result from an incorrect value of the oxycalorific equivalent and that a more reasonable value makes the two estimates of respiration agree.  相似文献   

5.
One of the most important aspects of the problem of life transfer in the cosmic space is the resistance of microorganisms to high-temperature heating during the launch and entry into the atmosphere. The high-temperature limits of the survival of microorganisms were studied under conditions modeling the laungh from the Mars and the landing on the Earth. Two strain of E. coli K12 exposed to short heating pulse were studied in order to tind out if they could resist high temperature while being in the desiccated state. The procedure was performed in vacuum. It was found that a fraction of bacteria survive heating pulses up to 250 degrees C in vacuum, while similar heating at normal atmospheric pressure leads to the total sterilization of samples.  相似文献   

6.
《Harmful algae》2009,8(1):140-151
This article seeks to guide the conceptual development and field application of the eutrophication–HAB hypothesis. After considering the evidence for this hypothesis, the importance of exogenous nutrients as a chemical habitat conditioner and the “family” of nutrient regulated effects that occur are discussed. The various definitions of eutrophication are applied; the conceptual ambiguity over how to perceive eutrophication, and the need to view eutrophication as a process and not as an ecological state are considered. The habitat irradiance-nutrient-flushing gradient regulates the bloom potential in response to exogenous nutrients. There is an apparent species-specific paradox within the eutrophication–HAB hypothesis related to the phycotoxin synthesis–nutrient relationship. Two nutrient–toxin relationships occur: toxin biosynthesis during nutrient sufficiency, and biosynthesis that requires a nutrient limitation. HAB events can be just as much nutrient depletion events as nutrient stimulated events, and whether the former develops depends upon the specific cellular toxicity–nutrient relationship of the bloom species. The importance of grazing in bloom regulation is highlighted. HABs and red tides generally should be viewed as blooms that are regulated by coupled nutrient-grazer processes – nutrient stimulation alone is inadequate, even when exogenous nutrients are not a factor. In assessing the eutrophication–HAB relationship, the collective grazing behavior of the micro-zooplankton, herbivorous copepods, filter feeding benthos, benthic larvae and, when present, omnivorous nekton must be considered. The importance of grazing in the bloom behavior of HAB species is illustrated using field and experimental data during a 5-month brown tide in Narragansett Bay. A cascade in grazing pressure regulated this bloom, with the initial collapse and then restoration of grazing pressure progressing through 7 stages of collective grazing pressure by micro-zooplankton, herbivorous copepods, benthic larvae, benthic filter feeders, and lytic virus infection.  相似文献   

7.
We focused on land units as landscape characteristics and selected seven typical land units on a land catena comprising two areas of southern Mongolia. Hierarchical analysis was used to test the hypothesis that a land unit’s edaphic factors could explain the differences in vegetation responses to grazing. We established the survey sites at increasing distances from a livestock camp or water point within each land unit, then analysed patterns of change in floristic and functional compositions, vegetation volume and soil properties within each land unit to reveal differences in vegetation responses to grazing. We also examined the variations in floristic and functional compositions across land units to identify the edaphic factors that may underlie these differences. Changes in vegetation and soil properties at increasing distances from a camp or water point within each land unit were into three different patterns. Ordination techniques consistently indicated that land unit groups categorised using edaphic factors corresponded to those categorised using response patterns. Our study revealed that edaphic factors were responsible for the observed landscape-scale differences in vegetation responses to grazing in the study areas. In addition, the mechanisms underlying vegetation responses to grazing may have been primarily determined by edaphic factors.  相似文献   

8.
9.
A common perception, particularly in South Africa, is that heavily and continuously grazed communal land leads to degradation and loss of plant diversity when compared to commercial rangeland farming or conservation areas. We focus on whether this applies to the Grassland Biome of South Africa and whether the opposite can occur, namely, an increase in plant species richness under heavy grazing. A study of a contrast between a communal area of the former Ciskei and a neighbouring nature reserve showed that intense utilization under communal use led to a significant increase in plant species richness. However, this increase was scale-dependent with the greatest significant difference occurring at sample plot scale (50 m2) but converging at the broader scale of the whole study site. Species that increased with heavy grazing included those from arid Karroid areas as well as some from more mesic grassland and savanna areas. The contribution of beta diversity to gamma diversity across the grazing contrast was relatively low which reflects the relatively high proportion of species shared between treatments. Total plant canopy cover declined sharply with heavy grazing. In terms of plant canopy cover, grazing favoured annual over perennial plants, prostrate over erect plants, and stoloniferous over tussock plant architecture. This pattern was not supported when expressed in terms of number of species belonging to these grazing response groups or traits.  相似文献   

10.
An organism''s body size plays an important role in ecological interactions such as predator–prey relationships. As predators are typically larger than their prey, this often leads to a strong positive relationship between body size and trophic position in aquatic ecosystems. The distribution of body sizes in a community can thus be an indicator of the strengths of predator–prey interactions. The aim of this study was to gain more insight into the relationship between fish body size distribution and trophic position in a wide range of European lakes. We used quantile regression to examine the relationship between fish species'' trophic position and their log‐transformed maximum body mass for 48 fish species found in 235 European lakes. Subsequently, we examined whether the slopes of the continuous community size distributions, estimated by maximum likelihood, were predicted by trophic position, predator–prey mass ratio (PPMR), or abundance (number per unit effort) of fish communities in these lakes. We found a positive linear relationship between species'' maximum body mass and average trophic position in fishes only for the 75% quantile, contrasting our expectation that species'' trophic position systematically increases with maximum body mass for fish species in European lakes. Consequently, the size spectrum slope was not related to the average community trophic position, but there were negative effects of community PPMR and total fish abundance on the size spectrum slope. We conclude that predator–prey interactions likely do not contribute strongly to shaping community size distributions in these lakes.  相似文献   

11.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

12.
Large‐scale and long‐term changes in fish abundance and distribution in response to climate change have been simulated using both statistical and process‐based models. However, national and regional fisheries management requires also shorter term projections on smaller spatial scales, and these need to be validated against fisheries data. A 26‐year time series of fish surveys with high spatial resolution in the North‐East Atlantic provides a unique opportunity to assess the ability of models to correctly simulate the changes in fish distribution and abundance that occurred in response to climate variability and change. We use a dynamic bioclimate envelope model forced by physical–biogeochemical output from eight ocean models to simulate changes in fish abundance and distribution at scales down to a spatial resolution of 0.5°. When comparing with these simulations with annual fish survey data, we found the largest differences at the 0.5° scale. Differences between fishery model runs driven by different biogeochemical models decrease dramatically when results are aggregated to larger scales (e.g. the whole North Sea), to total catches rather than individual species or when the ensemble mean instead of individual simulations are used. Recent improvements in the fidelity of biogeochemical models translate into lower error rates in the fisheries simulations. However, predictions based on different biogeochemical models are often more similar to each other than they are to the survey data, except for some pelagic species. We conclude that model results can be used to guide fisheries management at larger spatial scales, but more caution is needed at smaller scales.  相似文献   

13.
Rapid “change-in-support” (stepping or grasping) balance-recovery reactions play a critical role in preventing falls. Studies investigating age-related impairments in these reactions using differing perturbation methods have shown contradictory results. The discrepancies could be due to the different mechanical and sensory stimuli provided by the different perturbation methods, but could also be due to other confounding factors (e.g. differences in perturbation predictability). This study compared two commonly used perturbation methods: weight-drop cable-pulls (CPs) and motor-driven surface-translations (STs). For each perturbation method, effects of aging on the change-in-support reactions were established by comparing 10 young (22–28 years) and 30 older (64–79 years) adults, using large unpredictable multi-directional perturbations similar to those used in previous studies showing age-related differences. Age-related differences in the pattern and spatio-temporal features of the limb movements were examined for stepping and grasping reactions evoked by antero-posterior perturbation of stance, as well as stepping reactions evoked by lateral perturbations delivered while subjects walked “in-place”. Although age-group effects were almost always more pronounced for ST perturbations, the direction of the effect was always the same for both perturbation methods; hence, the perturbation-dependent differences in mechanical and sensory stimuli did not seem to be a critical factor. Perturbation waveform appeared to be a more important factor. For the perturbation methods used here, the ST perturbations were more destabilising than the CP perturbations (leading to a more rapid rise in perturbatory ankle-torque and greater centre-of-mass motion prior to the onset of the postural reaction), and were consequently more effective in revealing age-related deficiencies.  相似文献   

14.
15.
16.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

17.
Strongly biased codon usage is common in unicellular organisms, particularly in highly expressed genes. The bias is most simply explained as a balance between selection and mutation, with selection favouring those codons which are more efficiently translated. In a review Ikemura (1985) has proposed four rules for predicting which codons will be preferred, based on the properties of the transfer RNAs responsible for translating messenger RNA into protein. In this paper codon usage in E. coli and yeast is re-examined using the recent compilation of Maruyama et al. (1986). The codon adaptation index of Sharp and Li (1986a) is used as a measure of gene expression to investigate the importance of this factor. It is found that Ikemura's rules successfully predict preferred codons for yeast, but that two of them work less well for E. coli, and it is suggested that some of the apparent bias in weakly expressed genes of E. coli may be due to contextual effects on mutation rates.  相似文献   

18.
19.
Possible causes of the increased algal blooms in Lake Victoria in the 1980s have been disputed by several authors; some suggested a top-down effect by the introduced Nile perch, whereas others suggested a bottom-up effect due to eutrophication. In this article the potential impact is established of grazing by fish on phytoplankton densities, before the Nile perch upsurge and the concomitant algal blooms in the Mwanza Gulf. The biomass and trophic composition of fish in the sublittoral area of the Mwanza Gulf were calculated based on catch data from bottom trawls, and from gill nets covering the whole water column. Estimates of phytoplankton production in the same area were made from Secchi values and chlorophyll concentrations. The total phytoplankton intake by fish was estimated at 230 mg DW m−2 day−1. The daily gross production ranged from 6,200 to 7,100 mg DW m−2 day−1 and the net production from 1,900 to 2,200 mg DW m−2 day−1. Thus, losses of phytoplankton through grazing by fish were about 3–4% of daily gross and 10–12% of daily net phytoplankton production. As a consequence it is unlikely that the phytoplankton blooms in the second half of the 1980s were due to a top-down effect caused by a strong decline in phytoplankton grazing by fish.  相似文献   

20.
Accumulating evidence shows that environmental fluctuations and exploitation jointly affect marine fish populations, and understanding their interaction is a key issue for fisheries ecology. In particular, it has been proposed that age truncation induced by fisheries exploitation may increase the population's sensitivity to climate. In this study, we use unique long‐term abundance data for the Northeast Arctic stock of cod (Gadus morhua) and the Norwegian Spring‐Spawning stock of herring (Clupea harengus), which we analyze using techniques based on age‐structured population matrices. After identifying time periods with different age distributions in the spawning stock, we use linear models to quantify the relative effect of exploitation and temperature on the population growth rates. For the two populations, age truncation was found to be associated with an increasing importance of temperature and a relatively decreasing importance of exploitation, while the population growth rate became increasingly sensitive to recruitment variations. The results suggested that the removal of older age classes reduced the buffering capacity of the population, thereby making the population growth rate more dependent on recruitment than adult survival and increasing the effect of environmental fluctuations. Age structure appeared as a key characteristic that can affect the response of fish stocks to climate variations and its consequences may be of key importance for conservation and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号