首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The mitochondrion is a major organelle contributing to energy metabolism but also a main site of ROS (reactive oxygen species) production. LPS (lipopolysaccharide)-induced ROS signalling is a critical event in macrophage activation. In the present paper we report that part of LPS-mediated ROS signalling comes from mitochondria inside a signal amplification loop that enhances MAPK (mitogen-activated protein kinase) activation. More precisely, we have identified the inner mitochondrial membrane UCP2 (uncoupling protein 2) as a physiological brake on ROS signalling. Stimulation of murine bone marrow-derived macrophages by LPS quickly down-regulated UCP2 through the JNK (c-Jun N-terminal kinase) and p38 pathways. UCP2 down-regulation was shown to be necessary to increase mitochondrial ROS production in order to potentiate MAPK activation. Consistent with this, UCP2-deficient macrophages exhibit an enhanced inflammatory state characterized by increased nitric oxide production and elevated migration ability. Additionally, we found that the absence of UCP2 renders macrophages more resistant to nitric oxide-induced apoptosis.  相似文献   

3.
Sekar Y  Befus AD 《Nitric oxide》2012,26(1):74-80
Mast cells (MC) play a pivotal role in allergic inflammation and nitric oxide (NO) is known to regulate MC function. One mechanism of NO mediated actions is the post-translational modification protein tyrosine nitration mediated by reactive nitrogen species. In this study we identified targets for nitration in the human mast cell line LAD2 after treatment with a nitric oxide donor and with peroxynitrite. Using two dimensional gel electrophoresis and western blot analyses with monoclonal and polyclonal antibodies we identified 15-hydroxy prostaglandin dehydrogenase (PGDH), a major prostaglandin catabolizing enzyme, as a target for nitration in LAD2. This is the first report on expression of this enzyme in MC and also the first report that PGDH is a target of protein tyrosine nitration. Since MC synthesize and metabolize many prostaglandins including prostaglandin E(2), the major substrate for PGDH, nitration of this prostaglandin catabolizing enzyme is likely functionally significant.  相似文献   

4.
We determined the roles of reactive oxygen species (ROS) in the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated microglia. LPS treatment increased intracellular ROS in rat microglia dose-dependently. Pre-treatment with superoxide dismutase (SOD)/catalase, or SOD/catalase mimetics that can scavenge intracellular ROS, significantly attenuated LPS-induced release in PGE2. Diphenylene iodonium (DPI), a non-specific NADPH oxidase inhibitor, decreased LPS-induced PGE2 production. In addition, microglia from NADPH oxidase-deficient mice produced less PGE2 than those from wild-type mice following LPS treatment. Furthermore, LPS-stimulated expression of COX-2 (determined by RT-PCR analysis of COX-2 mRNA and western blot for its protein) was significantly reduced by pre-treatment with SOD/catalase or SOD/catalase mimetics. SOD/catalase mimetics were more potent than SOD/catalase in reducing COX-2 expression and PGE2 production. As a comparison, scavenging ROS had no effect on LPS-induced nitric oxide production in microglia. These results suggest that ROS play a regulatory role in the expression of COX-2 and the subsequent production of PGE2 during the activation process of microglia. Thus, inhibiting NADPH oxidase activity and subsequent ROS generation in microglia can reduce COX-2 expression and PGE2 production. These findings suggest a potential therapeutic intervention strategy for the treatment of inflammation-mediated neurodegenerative diseases.  相似文献   

5.
Certain corals are rich natural sources of prostaglandins, the metabolic origin of which has remained undefined. By analogy with the lipoxygenase/allene oxide synthase pathway to jasmonic acid in plants, the presence of (8R)-lipoxygenase and allene oxide synthase in the coral Plexaura homomalla suggested a potential metabolic route to prostaglandins (Brash, A. R., Baertshi, S. W., Ingram, C.D., and Harris, T. M. (1987) J. Biol. Chem. 262, 15829-15839). Other evidence, from the Arctic coral Gersemia fruticosa, has indicated a cyclooxygenase intermediate in the biosynthesis (Varvas, K., Koljak, R., J?rving, I., Pehk, T., and Samel, N. (1994) Tetrahedron Lett. 35, 8267-8270). In the present study, active preparations of G. fruticosa have been used to identify both types of arachidonic acid metabolism and specific inhibitors were used to establish the enzyme type involved in the prostaglandin biosynthesis. The synthesis of prostaglandins and (11R)-hydroxyeicosatetraenoic acid was inhibited by mammalian cyclooxygenase inhibitors (indomethacin, aspirin, and tolfenamic acid), while the formation of the products of the 8-lipoxygenase/allene oxide pathway was not affected or was increased. The specific cyclooxygenase-2 inhibitor, nimesulide, did not inhibit the synthesis of prostaglandins in coral. We conclude that coral uses two parallel routes for the initial oxidation of polyenoic acids: the cyclooxygenase route, which leads to optically active prostaglandins, and the lipoxygenase/allene oxide synthase metabolism, the role of which remains to be established. An enzyme related to mammalian cyclooxygenases is the key to prostaglandin synthesis in coral. Based on our inhibitor data, the catalytic site of this evolutionary early cyclooxygenase appears to differ significantly from both known mammalian cyclooxygenases.  相似文献   

6.
The mechanisms by which lipopolysaccharide (LPS) activates cells have been the subject of intense investigation for many years. Whereas much information on this process has been collected for mammalian species, little is known about the signalling path-ways operative in other animals. One general mode of cellular activation that has been recently pro-posed for pathways independent of the primary mammalian LPS receptor, CD14, involves reactive oxygen species (ROS) as intermediates in LPS-induced signalling pathways. Therefore, we used 2',7'-dichlorodihydrofluorescein, a fluorogenic probe of redox activity, to examine LPS-induced oxidative responses of a macrophage-like cell line from the rainbow trout, RTS11. Lipopolysaccharide dose-dependently increased oxidation of this probe by RTS11 cells, and a variety of other cell lines. This process was inhibited by catalase, superoxide dismutase and NG-methylarginine citrate, an inhibitor of nitric oxide synthases, suggesting the involvement of a diverse assortment of cellular ROS. More careful dissection of this phenomenon led us to conclude that the increase in oxidation was, in fact, due almost entirely to metals, particularly copper, in some LPS preparations, which is something to consider when experimenting with LPS.  相似文献   

7.

Background  

2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing.  相似文献   

8.
Eicosanoids are important mediators of inflammation, and have been shown to have potent, and usually suppressive immunoregulatory activities. In the paper, we have examined the role of prostaglandin (PGE2) production in the regulation of two cytokines, IL-2 and IL-3, which both play a key role in contact sensitivity and delayed type hypersensitivity reactions. In agreement with previous studies, we demonstrate that prostaglandins down-regulate IL-2 production in the system. Unexpectedly, however, IL-3 levels are enhanced in the presence of the prostaglandin PGE2 and conversely, are inhibited by treatment with aspirin, a potent inhibitor of prostaglandin metabolism. The implications of this result in terms of the immunoregulatory role of PGs will be discussed.  相似文献   

9.
We previously reported that tumor necrosis factor-alpha (TNF) and lipopolysaccharide (LPS) stimulate DNA synthesis in chick embryo cardiomyocytes (CM) via nitric oxide and polyamine biosynthesis. Here we show an involvement of nuclear factor-kappaB (NF-kappaB) in the induction of nitric oxide synthase (NOS) and ornithine decarboxylase (ODC), the key enzyme in polyamine biosynthesis. In addition NF-kappaB activation appears to favor survival of CM by reducing caspase activation. TNF and LPS also stimulate phosphorylation of extracellular signal-regulated kinase (ERK), which is required for the changes in ODC and caspase activity, but not for NOS induction or NF-kappaB activation. In conclusion, these results indicate that NF-kappaB, in cooperation with ERK, plays a pivotal role in the growth stimulating effects of TNF and LPS, leading to the induction of both ODC and NOS and to the reduction of caspase activity.  相似文献   

10.
Bacterially derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY), and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrially derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (compound-9; C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, and neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation.  相似文献   

11.
Growing evidence suggests that energy metabolism and inflammation are closely linked and that cross-talk between these processes is fundamental to the pathogenesis of many human diseases. However, the molecular mechanisms underlying these observations are still poorly understood. Here we describe the key role of ATP-citrate lyase (ACLY) in inflammation. We find that ACLY mRNA and protein levels markedly and quickly increase in activated macrophages. Importantly, ACLY activity inhibition as well as ACLY gene silencing lead to reduced nitric oxide, reactive oxygen species and prostaglandin E2 inflammatory mediators. In conclusion, we present a direct role for ACLY in macrophage inflammatory metabolism.  相似文献   

12.
Molecular hydrogen has been reported to be effective for a variety of disorders and its effects have been ascribed to the reduction of oxidative stress. However, we have recently demonstrated that hydrogen inhibits type I allergy through modulating intracellular signal transduction. In the present study, we examined the hydrogen effects on lipopolysaccharide/interferon γ LPS/IFNγ-induced nitric oxide (NO) production in murine macrophage RAW264 cells. Treatment with hydrogen reduced LPS/IFNγ-induced NO release, which was associated with a diminished induction of inducible isoform of nitric oxide synthase (iNOS). Hydrogen treatment inhibited LPS/IFNγ-induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and its downstream signaling molecules, p38 MAP kinase and JNK, as well as IκBα, but did not affect activation of NADPH oxidase and production of reactive oxygen species (ROS). As ROS is an upstream activator of ASK1, inhibition of ASK1 by hydrogen without suppressing ROS implies that a potential target molecule of hydrogen should be located at the receptor or immediately downstream of it. These results suggested a role for molecular hydrogen as a signal modulator. Finally, oral intake of hydrogen-rich water alleviated anti-type II collagen antibody-induced arthritis in mice, a model for human rheumatoid arthritis. Taken together, our studies indicate that hydrogen inhibits LPS/IFNγ-induced NO production through modulation of signal transduction in macrophages and ameliorates inflammatory arthritis in mice, providing the molecular basis for hydrogen effects on inflammation and a functional interaction between two gaseous signaling molecules, NO and molecular hydrogen.  相似文献   

13.
植物细胞活性氧种类、代谢及其信号转导   总被引:6,自引:0,他引:6  
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。  相似文献   

14.
It is known that nitric oxide modulates the prostaglandin generation. However, little is known about the regulatory action of prostaglandin on nitric oxide production. There is a molecular cross-talk between nitric oxide and prostaglandin. Here, we examined biochemical signalling pathways coupled to the prostaglandin E(2) (PGE(2)) receptor related to nitric oxide synthase stimulation in rat submandibular gland. PGE(2) through the stimulation of its own receptor, triggered activation of phosphoinositide turnover (IPs), translocation of protein kinase C (PKC), stimulation of nitric oxide synthase activity (NOS) and increased production of cyclic GMP (cGMP). PGE(2) stimulation of NOS and cGMP production was blunted by agents interfering with calcium influx, calcium/calmodulin and phospholipase C (PLC) activities; while PKC inhibitor was able to stimulate PGE(2) effects. PGE(2) did not evoke amylase release, indicating that NOS/ cGMP pathway were not associated with this enzyme secretion. Our results suggest that this prostanoid could act as vasoactive chemical mediator through its ability to activate NOS-cGMP pathway via own gland membrane receptor.  相似文献   

15.
Endothelins are well known as modulators of inflammation in the periphery, but little is known about their possible role in brain inflammation. Stimulation of astrocyte prostaglandin, an inflammatory mediator, synthesis was shown so far only by endothelin 3 (ET-3). By contrast, several studies showed no change or slight decrease of basal nitric oxide synthesis after treatment of astrocytes with endothelin 1 (ET-1) and ET-3. However, a significant increase in astrocytic and microglial nitric oxide synthase (NOS) was observed after exposure to ET-1 and ET-3 in a model of forebrain ischaemia. Here we demonstrate that all three endothelins (ET-1, ET-2, ET-3) significantly enhanced the synthesis of prostaglandin E(2) and nitric oxide in glial cells. Each of the selective antagonists for ETA and ETB receptors (BQ123 and BQ788 respectively), significantly inhibited endothelins-induced production of both nitric oxide and prostaglandin E(2). These results suggest a regulatory mechanism of endothelins, interacting with both endothelin receptors, on glial inflammation. Therefore, inhibition of endothelin receptors may have a therapeutic potential in pathological conditions of the brain, when an uncontrolled inflammatory response is involved.  相似文献   

16.
Cyclooxygenase-2 (COX-2) is a recently discovered isoform of cyclooxygenase that is inducible by various types of inflammatory stimuli. Although this enzyme is considered to play a major role in inflammation processes by catalyzing the production of prostaglandins, the precise location, distribution, and regulation of prostaglandin synthesis remains unclear in several tissues. Using in situ hybridization histochemistry, we investigated the induction of COX-1 and COX-2 mRNA expression after systemic administration of a pyrogen, lipopolysaccharide (LPS), in kidney and adrenal gland in the rat. The COX-2 mRNA signals dramatically increased 1 h after LPS treatment in the kidney outer medulla and adrenal cortex, where almost no or little expression was observed in nontreated animals, and returned to control levels within 24 h. COX-2 mRNA levels increased in the kidney inner medulla 6 h after treatment. There was also a significant increase in mRNA levels in the kidney cortex and adrenal medulla. On the other hand, COX-1 mRNA levels did not show any detectable changes except in the kidney inner medulla, where a significant downregulation of mRNA expression was observed after LPS treatment. Light and electron immunocytochemistry using COX-2 antibodies showed that strong COX-2 immunoreactivity was localized to certain cortical cells of the thick ascending limb of Henle. In addition, based on double-staining with antiserum to nitric oxide synthase (NOS) four further cell populations could be identified in kidney cortex, including weakly COX-2-positive, NOS-positive macula densa cells. After LPS treatment, changes in COX-2 immunoreactivity could be observed in interstitial cells in the kidney medulla and in inner cortical cells in the adrenal gland. These results show that COX-2 is a highly induced enzyme that can be up-regulated in specific cell populations in kidney and adrenal gland in response to inflammation, leading to the elevated levels of prostaglandins seen during fever. In contrast COX-1 mRNA levels remained unchanged in this experimental situation, except for a decrease in kidney inner medulla.  相似文献   

17.
The implication of leukotrienes as mediators of inflammation and recent evidence that prostaglandin analogues provide a beneficial effect during experimental colitis led to the speculation that (i) leukotrienes may be injurious and (ii) prostaglandins may be protective to colonic mucosa. Using a 2% acetic acid induced rat colitis model, we administered specific cyclooxygenase (indomethacin) and leukotriene biosynthesis inhibitors (MK-886) to examine the effect of endogenous prostaglandins and leukotrienes on colonic macroscopic injury, mucosal inflammation as measured by myeloperoxidase activity, net in vivo intestinal fluid absorption, and colonic PGE2 and LTB4 levels as measured by in vivo rectal dialysis. Indomethacin treatment prior to induction of colitis reduced endogenous mucosal PGE2 levels and exacerbated macroscopic ulceration and net fluid absorption. Addition of the exogenous PGE1 analogue misoprostol to the indomethacin-exacerbated colitis completely healed colonic macroscopic ulceration and inflammation but only partially improved fluid absorptive injury. The specific leukotriene biosynthesis inhibitor MK-886 administered prior to induction of colitis healed macroscopic ulceration and inflammation but not fluid absorptive injury. This mucosal reparative effect of MK-886 occurred at a dose that reduced colonic LTB4 synthesis while concomitantly enhancing PGE2 levels. Combining MK-886 with misoprostol treatment improved not only macroscopic ulceration and inflammation but also provided a synergistic effect that maintained net colonic fluid absorption at noncolitic control levels. These studies suggest that, during the induction of experimental colitis, endogenous prostaglandins play a pivotal role in providing a mucosal healing effect, and that leukotriene biosynthesis inhibitor may manifest part of its beneficial effect by shifting arachidonic acid metabolism towards production of prostaglandins.  相似文献   

18.
CME‐1, a novel water‐soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti‐oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME‐1, namely anti‐inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)‐stimulated RAW 264.7 cells with CME‐1 concentration‐dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME‐1‐treated RAW 264.7 cells, LPS‐induced IκBα degradation and the phosphorylation of p65, Akt and mitogen‐activated protein kinases (MAPKs), including extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)‐specific inhibitor, significantly reversed the CME‐1‐suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up‐regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME‐1‐induced PP2A activation and its subsequent suppression of LPS‐activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS‐induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME‐1. Furthermore, the role of ceramide signalling pathway and anti‐oxidative property were also demonstrated in CME‐1‐mediated inhibition of LPS‐activated primary peritoneal macrophages. In conclusion, CME‐1 suppressed iNOS expression by up‐regulating ceramide‐induced PP2A activation and reducing ROS production in LPS‐stimulated macrophages. CME‐1 is a potential therapeutic agent for treating inflammatory diseases.  相似文献   

19.
20.
Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号