首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Australo-Papuan family Petroicidae (Aves: Passeriformes) has been the focus of much systematic debate about its relationships with other passerine families, as well as relationships within the family. Mostly conservative morphology within the group limits the effectiveness of traditional taxonomic analyses and has contributed to ongoing systematic debate. To assess relationships within the family, we sampled 47 individuals from 26 species, representing the majority of genera and species, for four loci: 528 base pairs (bp) of C-myc, 501 bp of BA20454 and 336 bp of BA23989 from nuclear DNA and 1005 bp of the mitochondrial ND2 gene. There was consensus between individual loci and overall support for major lineages was strong. Partitioned Bayesian analyses of all four loci produced a fully resolved and very well-supported phylogeny that addresses many of the previous systematic debates in this group. The Eopsaltriinae as construed is monophyletic with the exception of Eopsaltria flaviventris, which is nested within Microeca as an unremarkable member of that genus. This relationship is corroborated by morphology and egg color and pattern. Petroicinae as currently construed was not monophyletic and comprised two lineages that are paraphyletic with respect to each other. The third subfamily, Drymodinae, remains incertae sedis. The mangrove robin, Peneonanthe pulverulenta, of tropical Australia and New Guinea is nested within a clade that also contained the sampled species of Peneothello and Melanodryas, a novel relationship. Preliminary biogeographic and divergence time estimates from these results are discussed and a new subfamily arrangement proposed.  相似文献   

2.
The New Guinean songbird fauna contains numerous enigmatic species and genera whose phylogenetic affinities have been difficult to resolve. Two such genera are ditypic Amalocichla and monotypic Pachycare. Here we obtained DNA sequences of two nuclear gene regions and a mitochondrial gene to ascertain the phylogenetic positions of these genera. Amalocichla was identified as the sister of the Australasian robins (Petroicidae) contrary to most recent classifications, which align it with the New Guinean mouse‐warblers Crateroscelis in the family Acanthizidae. The morphological characters used to place Amalocichla in the Acanthizidae appear to be convergent and linked to ground‐living adaptations. Pachycare was found to be most closely related to the Acanthizidae and not to the Pachycephalidae, corvine assemblage, or Petroicidae, as most commonly assumed. Morphological and behavioural characters support the molecular data in this conclusion. Previous taxonomic placements appear to have been based on superficial similarities in plumage coloration and vocal characterizations.  相似文献   

3.
The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.  相似文献   

4.
Lycium comprises approximately 70 species and is disjunctly distributed in temperate to subtropical regions in South America, North America, southern Africa, Eurasia, and Australia. Among them, only Lycium sandwicense A. Gray sporadically occurs widely on oceanic islands in the Pacific Ocean. To investigate phylogenetic and biogeographic relationships of the genus with emphasis on L. sandwicense, the coding region of matK, the two intergenic spacers trnT (UGU)-trnL (UAA) and trnL (UAA)-trnF (GAA), and the trnL (UAA) intron of chloroplast DNA (cpDNA) were sequenced. A strict consensus tree resulting from the phylogenetic analysis indicates the following: (1) New World species comprise a potentially paraphyletic assemblage; (2) southern African, Australian, and Eurasian species together are monophyletic; (3) southern African species are a paraphyletic assemblage; and (4) L. sandwicense is in a clade with certain New World species. The estimated biogeographic events based on the cpDNA analysis indicate that (1) Lycium originated in the New World, (2) all southern African, Australian, and Eurasian species have a common ancestor from the New World, (3) Australian and Eurasian species originated once from a southern African progenitor, and (4) L. sandwicense differentiated from the New World species.  相似文献   

5.
Aim This analysis of moth (Lepidoptera) communities colonizing an alien tree invading secondary rain forest vegetation in Melanesia examines the predictability of insect herbivorous communities across distances of tens to thousands of km and the effect of dispersal barriers on community composition in the tropics. Location Six secondary rain forest sites were studied within four equidistant yet distinct geographic areas of the New Guinea mainland and the Bismarck Archipelago, including two watershed areas (Madang and Sepik) on mainland New Guinea and the adjacent large island of New Britain and small island of Unea. Methods The analysis is based on feeding records obtained by quantitative sampling and rearing of caterpillars from the alien host Spathodea campanulata (Bignoniaceae). It examines the variation in Lepidoptera community composition at six study sites distributed on three adjacent islands ranging in size from 30 to 865,000 km2. Results Spathodea campanulata was colonized by 54 folivorous species of Lepidoptera. Most of them were generalists, feeding on > 1 native plant family. However, the three most abundant species representing 83% of all individuals (Acherontia lachesis, Hyblaea puera complex and Psilogramma menephron) were relatively host specific, feeding predominantly on a single native family that is not the Bignoniaceae. Most of the 23 species analysed in detail had a wide geographic distribution, including 13 species spanning the entire 1000‐km study transect. While the Lepidoptera in two New Guinea areas 280 km apart were similar to each other, there was a discontinuity in species composition between New Guinea and the smaller islands. However, no negative effect of small islands on species richness was detected. Main conclusions Spathodea campanulata was rapidly colonized by folivorous Lepidoptera communities with species richness and dominance structure indistinguishable from the assemblages feeding on native hosts, despite its phylogenetic isolation from the native vegetation. Although most species were generalists, the highest population densities were reached by relatively specialized species, similar to the communities on native hosts. The species turnover across distances from 10 to 1000 km was relatively low as most of the species had wide geographic ranges.  相似文献   

6.
The New Zealand robin (Petroica australis), tomtit (P. macrocephala), and Chatham Island black robin (P. traversi) are members of the Petroicidae family of Australo-Papuan robins, found throughout Australasia and the western Pacific. In the nearly 200 years since the New Zealand members of Petroicidae were first described, the division of species, subspecies, and even genera has undergone many changes. In this study, we investigate whether molecular phylogenies based on mitochondrial DNA sequences support current taxonomic classifications based on morphology. Petroica traversi, P. australis, and P. macrocephala form distinct clades in phylogenetic trees constructed from Cytochrome b and control region sequences, however the position of the black robin is at odds with the morphological and behavioral data. The black robin does not appear to be a derivative of the New Zealand robin, instead it groups strongly with the tomtit, indicating that lineage sorting and/or introgressive hybridization may have occurred. There is some evidence to support the hypothesis that two invasions of Petroica from Australia have occurred, however additional data from Australian Petroica taxa are required to confirm this. Control region sequences confirm a deep split between the North and South Island P. australis lineages, but suggest a recent radiation of P. macrocephala.  相似文献   

7.
Abstract  Pseudofoenus caledonicus sp. nov. is described from New Caledonia, and is the second member of the Hyptiogastrinae recorded from these islands. This discovery points to a more diverse fauna of Hyptiogastrinae in the south-west Pacific, which also includes P. ritae (Cheesman), from New Caledonia and Vanuatu, P. extraneus (Turner) from Fiji, and a number of species from New Guinea and New Zealand. Although a revised phylogenetic analysis does not resolve the relationships of P. caledonicus , neither the two New Caledonian species nor the south-west Pacific fauna in general are likely to be monophyletic. This fauna is discussed in terms of its relationships with Pseudofoenus spp. from mainland Australia, and possible mechanisms that have given rise to the current distribution of species.  相似文献   

8.
The general distribution of Atractomorpha australis Rehn, A. similis Bolívar and A. crenaticeps (Blanchard) in Australia and the South Pacific is discussed. Detailed synonymies and lists of known localities are given for each species, together with a distribution map. A. australis is confined to cooler, moister regions of Australia from eastern Victoria to south-western Queensland; A. similis is more tropical, occurring in the southern Moluccas, Timor, southern New Guinea and associated islands to northern and eastern Australia, but it extends, in suitable localities, as far south as central New South Wales, and, in inland areas, even to north-western Victoria and south-eastern South Australia; A. crenaticeps , formerly thought to embrace both the above species, is restricted to the northern Moluccas, western and other parts of New Guinea north of and including the central mountain chains and associated islands to the north and west, and to the Bismarck Archipelago and the Solomon Islands.  相似文献   

9.
We analyze the phylogeny of three genera of Australasian elapid snakes (Acanthophis-death adders; Oxyuranus-taipans; Pseudechis-blacksnakes), using parsimony, maximum likelihood, and Bayesian analysis of sequences of the mitochondrial cytochrome b and ND4 genes. In Acanthophis and Pseudechis, we find evidence of multiple trans-Torresian sister-group relationships. Analyses of the timing of cladogenic events suggest crossings of the Torres Strait on several occasions between the late Miocene and the Pleistocene. These results support a hypothesis of repeated land connections between Australia and New Guinea in the late Cenozoic. Additionally, our results reveal undocumented genetic diversity in Acanthophis and Pseudechis, supporting the existence of more species than previously believed, and provide a phylogenetic framework for a reinterpretation of the systematics of these genera. In contrast, our Oxyuranus scutellatus samples from Queensland and two localities in New Guinea share a single haplotype, suggesting very recent (late Pleistocene) genetic exchange between New Guinean and Australian populations.  相似文献   

10.
Recent studies show a remarkable scarcity of faunal exchange events between Australia and New Guinea in the Pleistocene despite the presence of a broad land connection for long periods. This is attributed to unfavourable conditions in the connecting area associated with the long established northern Australian Monsoon Climate. This would be expected to have impacted strongly on freshwater faunas with the following results: (1) limited overlap in species, (2) most higher taxonomic groups present in both areas sharing no species or even genera and (3) shared species dominated by lentic species with high dispersal capacity. Testing these predictions for dragonflies showed the turnover in the family, genus and species composition between Australia and New Guinea to be higher than anywhere in the world with only 50% of families and subfamilies, 33% of the genera and 8% of the species being shared. Only one of the 53 shared species favors lotic waters compared with 64% of the 652 combined Australian–New Guinean species. These results agree with our predictions and indicate that the dragonfly fauna of Australia and New Guinea have effectively been separated during the Pleistocene probably due to the prolonged unfavourable climatic conditions in the intervening areas.  相似文献   

11.
This first study of the whole genusAgathis makes use of recent local revisions of the New Caledonian and Australian species which are all maintained. The male cone is shown to have most of the taxonomically useful variation, and this confirms the findings of two partial revisions centred on Indonesian species. Thirteen species are recognized, two of which have two subspecies. New Caledonia has five, and Australia three, sympatric species. Otherwise the species are allopatric except for a few populations of central MalesianA. dammara within the range of west MalesianA. borneensis. One of these montane populations is the distinctiveA. dammara subsp.flavescens of Malaya, formerly a full species.Two groups and three individually distinctive species can be recognized on microsporophyll characters. The larger, group B, comprizes eight species,A. australis (New Zealand),A. corbassonii, A. lanceolata andA. montana (New Caledonia),A. macrophylla (Melanesian islands and includingA. obtusa andA. vitiensis),A. atropurpurea (Australia),A. dammara (mainly central Malesia) andA. borneensis (west Malesia); both the last have long synonymies. The smaller species, group (A), comprizesA. microstachya (Australia) andA. labillardieri (west New Guinea and the Sepik basin). The individually distinctive species areA. moorei andA. ovata of New Caledonia andA. robusta of Australia with its new subspeciesnesophila, described here, of eastern New Guinea and New Britain.  相似文献   

12.
Ground-doves represent an insular bird radiation distributed across the Indo-Pacific. The radiation comprises sixteen extant species, two species believed to be extinct and six species known to be extinct. In the present study, we present a molecular phylogeny for all sixteen extant species, based on two mitochondrial markers. We demonstrate that the Gallicolumba as currently circumscribed is not monophyletic and recommend reinstalling the name Alopecoenas for a monophyletic radiation comprising ten extant species, distributed in New Guinea, the Lesser Sundas and Oceania. Gallicolumba remains the name for six species confined to New Guinea the Philippines and Sulawesi. Although our phylogenetic analyses fail to support a single origin for the remaining Gallicolumba species, we suspect that the addition of nuclear sequence data may alter this result. Because a number of ground-dove taxa have gone extinct, it is difficult to assess biogeographical patterns. However, the Alopecoenas clade has clearly colonized many remote oceanic islands rather recently, with several significant water crossings. The Gallicolumba radiation(s), on the other hand, is significantly older and it is possible that diversification within that group may in part have been shaped by plate tectonics and corresponding re-arrangements of land masses within the Philippine and Sulawesi region.  相似文献   

13.
We use approximately 1900bp of mitochondrial (ND2) and nuclear (c-mos and Rag-1) DNA sequence data to recover phylogenetic relationships among 58 species and 26 genera of Eugongylus group scincid lizards from New Caledonia, Lord Howe Island, New Zealand, Australia and New Guinea. Taxon sampling for New Caledonian forms was nearly complete. We find that the endemic skink genera occurring on New Caledonia, New Zealand and Lord Howe Island, which make up the Gondwanan continental block Tasmantis, form a monophyletic group. Within this group New Zealand and New Zealand+Lord Howe Island form monophyletic clades. These clades are nested within the radiation of skinks in New Caledonia. All of the New Caledonian genera are monophyletic, except Lioscincus. The Australian and New Guinean species form a largely unresolved polytomy with the Tasmantis clade. New Caledonian representatives of the more widespread genera Emoia and Cryptoblepharus are more closely related to the non-Tasmantis taxa than to the endemic New Caledonian genera. Using ND2 sequences and the calibration estimated for the agamid Laudakia, we estimate that the diversification of the Tasmantis lineage began at least 12.7 million years ago. However, using combined ND2 and c-mos data and the calibration estimated for pygopod lizards suggests the lineage is 35.4-40.74 million years old. Our results support the hypothesis that skinks colonized Tasmantis by over-water dispersal initially to New Caledonia, then to Lord Howe Island, and finally to New Zealand.  相似文献   

14.
Contributions to the Cladocera fauna from Papua New Guinea   总被引:1,自引:1,他引:0  
Twenty-eight taxa of the Cladocera are identified in collections from Papua New Guinea, 17 being new records for New Guinea, bringing the total number of Cladocera taxa reported for this region to 39. Most of the taxa are circumtropical. One species (Sarsilatona papuana) is endemic to Papua New Guinea and northern Australia. The species list includes two species that are normally listed as Holarctic:Alonella nana andAlona rustica. Widespread genera such asDaphnia, Pleuroxus, Disparalona, Acroperus were strikingly absent from the Papua New Guinean material.  相似文献   

15.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

16.
Polystichum, one of the largest genera of ferns, occurs worldwide with the greatest diversity in southwest China and adjacent regions. Although there have been studies of Chinese Polystichum on its traditional classification, geographic distributions, and even a few on its molecular systematics, its relationships to other species outside China remain little known. Here, we investigated the phylogeny and biogeography of the Polystichum species from China and Australasia. The evolutionary relationships among 42 Polystichum species found in China (29 taxa) and Australasia (13 taxa) were inferred from phylogenetic analyses of two chloroplast DNA sequence data sets: rps4-trnS and trnL-F intergenic spacers. The divergence time between Chinese and Australasian Polystichum was estimated. The results indicated that the Australasian species comprise a monophyletic group that is nested within the Chinese diversity, and that the New Zealand species are likewise a monophyletic group nested within the Australasian species. The divergence time estimates suggested that Chinese Polystichum migrated into Australasia from around 40 Ma ago, and from there to New Zealand from about 14 Ma. The diversification of the New Zealand Polystichum species began about 10 Ma. These results indicated that Polystichum probably originated in eastern Asia and migrated into Australasia: first into Australia and then into New Zealand.  相似文献   

17.
Oliver, P.M., Richards, S.J. & Sistrom, M. (2012). Phylogeny and systematics of Melanesia’s most diverse gecko lineage (Cyrtodactylus, Gekkonidae, Squamata). —Zoologica Scripta, 41, 437–454. The systematics and biogeographical history of the diverse fauna of New Guinea and surrounding islands (Melanesia) remain poorly known. We present a phylogeny for 16 of the 21 recognised Melanesian bent‐toed geckos in the genus Cyrtodactylus based on mitochondrial sequence data. These analyses reveal two divergent lineages of Cyrtodactylus within Melanesia. One includes a single recognised species with clear affinities to sampled taxa from Asia. The other comprises a relatively diverse radiation (likely 30+ species), not closely related to sampled extralimital taxa and centred on the Melanesian region (including Australia). Many taxa within this second lineage are endemic to islands surrounding New Guinea, and dispersal and speciation on peripheral islands appears to have played an important role in the accumulation of species diversity within this clade. In contrast, little diversity is centred upon montane areas, although we do identify at least one lineage closely associated with hill and lower montane forest that probably dates to at least the late Miocene. Our phylogenetic analyses also reveal numerous divergent lineages that require taxonomic attention, including at least two widespread taxa that are likely to be composite, additional specimens of Cyrtodactylus capreoloides (until recently known only from the holotype) and several divergent and completely novel lineages, two of which we introduce herein: Cyrtodactylus arcanus sp. n. and Cyrtodactylus medioclivus sp. n.  相似文献   

18.
Bourguignon T  Roisin Y 《ZooKeys》2011,(148):55-103
Recently, we completed a revision of the Termitidae from New Guinea and neighboring islands, recording a total of 45 species. Here, we revise a second family, the Rhinotermitidae, to progress towards a full picture of the termite diversity in New Guinea. Altogether, 6 genera and 15 species are recorded, among which two species, Coptotermes gambrinus and Parrhinotermes barbatus, are new to science. The genus Heterotermes is reported from New Guinea for the first time, with two species restricted to the southern part of the island. We also provide the first New Guinea records for six species of the genera Coptotermes and Schedorhinotermes. We briefly describe soldiers and imagoes of each species and provide a key based on soldier characters. Finally, we discuss the taxonomic and biogeographical implication of our results. A replacement name, Schedolimulus minutides Bourguignon, is proposed for the termitophilous staphylinid Schedolimulus minutus Bourguignon, to solve a question of secondary homonymy.  相似文献   

19.
The glider genus Petaurus comprises a group of arboreal and nocturnal marsupial species from New Guinea and Australia. Molecular data were generated in order to examine phylogenetic relationships among species within the genus and explore the time-scale of diversification and biogeographic history of the genus in Australia and New Guinea. All known species and subspecies of Petaurus (with the exception of P. biacensis) were sequenced for two mitochondrial genes (ND2 and ND4) and one nuclear marker (omega-globin gene). Phylogenetic analyses confirmed the monophyly of the genus relative to other petaurids and showed a sister relationship of P. australis to the rest of Petaurus. The analyses revealed that currently recognised species of Petaurus formed distinct mitochondrial DNA (mtDNA) clades. Considerable mtDNA diversity and seven distinct clades were identified within the species P. breviceps, with the distribution of each clade showing no correspondence with the distributional limits of known subspecies. Molecular dating analyses using BEAST suggested an early to mid-Miocene origin (18–24 mya) for the genus. Ancestral area reconstructions, using BayesTraits, did not resolve the location for the centre of origin of Petaurus, but provided evidence for at least one dispersal event from New Guinea to Australia that led to the evolution of extant Australian populations of P. breviceps, P. norfolcensis and P. gracilis. The timing of this dispersal event appears to pre-date the Pleistocene, adding to the growing number of studies that suggest faunal connections occurred between Australia and New Guinea in the Late Miocene to Pliocene period.  相似文献   

20.
The Papuan region, comprising New Guinea and nearby islands, has a complex geological history that has fostered high levels of biodiversity and endemism. Unfortunately, much of this diversity remains undocumented. We examine the evolutionary relationships of the venomous snake genus Aspidomorphus (Elapidae: Hydrophiinae), a Papuan endemic, and document extensive cryptic lineage diversification. Between Aspidomorphus species we find 22.2–27.9% corrected cyt-b sequence divergence. Within species we find 17.7–23.7% maximum sequence divergence. These high levels of genetic divergence may have complicated previous phylogenetic studies, which have had difficulty placing Aspidomorphus within the subfamily Hydrophiinae. Compared to previous studies, we increase sampling within Hydrophiinae to include all currently recognized species of Aspidomorphus and increase species representation for the genera Demansia and Toxicocalamus. We confirm monophyly of Aspidomorphus and resolve placement of the genus utilizing a set of seven molecular markers (12S, 16S, cyt-b, ND4, c-mos, MyHC-2, and RAG-1); we find strong support for a sister-group relationship between Aspidomorphus and a Demansia/Toxicocalamus preussi clade. We also use one mitochondrial (cyt-b) and one nuclear marker (SPTBN1) to document deep genetic divergence within all currently recognized species of Aspidomorphus and discuss the Solomon Island Arc as a potential center of divergence in this species. Lastly, we find high levels of concordance between the mtDNA and nuDNA markers used for inter-species phylogenetic reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号