首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transforming growth factor beta1 (TGF-beta(1)) is regarded as an important auto/paracrine regulator of mammary gland involution, however, its apoptotic effect and inhibition of growth in bovine mammary epithelial cells (MEC) has not been documented. In the present study, laser scanning cytometry, confocal and immunoelectron microscopy techniques were used for quantitative and qualitative analyzes of apoptosis, cell cycle and expression, subcellular redistribution and interactions of apoptosis-related proteins in bovine BME-UV1 MEC exposed to TGF-beta(1). TGF-beta(1) exerted both antiproliferative and apoptotic action. The antiproliferative effect was manifested by increase of cell number in G1 phase with simultaneous decrease of cell number in S and G2/M phases. It resulted in significant increase of G1/S ratio in TGF-beta(1) treated cells, indicating partial cell cycle arrest at the G1-S transition. Apoptosis induced by TGF-beta(1) manifested by characteristic morphological changes. Among biochemical features of TGF-beta(1)-induced apoptosis in BME-UV1 cells we found: (1) an increase of cell number with lowered DNA content and condensed chromatin, (2) enhanced expression of caspase-3 and m-calpain, (3) elevated number of 89 kDa PARP degradation fragments, and (4) aggregation of Bax and its interactions with voltage dependant anion channel-1. In conclusion, antiproliferative and apoptotic action of TGF-beta(1), observed in the culture of BME-UV1 cells, suggests an essential role of this cytokine in the regulation of mammary gland involution in cow.  相似文献   

2.
TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.  相似文献   

3.
Regulation of autophagy in bovine mammary epithelial cells   总被引:1,自引:0,他引:1  
The bovine mammary gland undergoes intensive remodelling during the lactation cycle, and the escalation of this process is observed during dry periods. The main type of cell death responsible for bovine mammary gland involution is apoptosis; however, there are also a lot of cells exhibiting morphological features of autophagy during drying off. Our in vitro and in vivo studies of bovine mammary gland physiology suggest that the enhanced process of autophagy, observed at the end of lactation and during dry periods, is the result of: (1) decreased level of lactogenic hormones (GH, IGF-I), (2) decreased GH-R and IGF-IR alpha expression, (3) increased expression of auto/paracrine apoptogenic peptides (IGFBPs, TGFbeta), (4) increased influence of sex steroids (17beta-estradiol and progesterone) and (5) enhanced competition between the between the intensively developing fetus and the mother organism for nutritional and bioactive compounds. The above conditions may create a state of temporary malnutrition of mammary epithelial cells, which forces the cells to the induction of autophagy, as a mechanism for stabilizing intracellular supplies of energy and amino acids, especially during the enhanced activity of apoptogenic factors.  相似文献   

4.
5.
In this study we examined the ability of interferon-gamma (IFN-gamma) to regulate mammary epithelial cell growth and gene expression, with particular emphasis on two genes: Maspin (a member of serine protease inhibitor superfamily), and the lysosomal aspartyl endopeptidase cathepsin D (CatD). The protein products of these genes are critically involved in regulation of multitude of biological functions in different stages of mammary tissue development and remodeling. In addition, the expression of Maspin is down-regulated in primary breast cancer and is lost in metastatic disease, while CatD is excessively produced and aberrantly secreted by breast cancer cells. We report that IFN-gamma receptors are expressed in mammary epithelial cells, and receptor engagement by IFN-gamma transduces the IFN-gamma signal via Stat-1 resulting in decreased vacuolar pH. This change in vacuolar pH alters CatD protein processing and secretion concurrent with increased Maspin secretion. In addition, IFN-gamma exerts a suppressive effect on cell growth and proliferation, and induces morphological changes in mammary epithelial cells. Our studies also reveal that breast cancer cells, which are devoid of Maspin, are refractory to IFN-gamma with respect to changes in vacuolar pH and CatD. However, Maspin transfection of breast cancer cells partially sensitizes the cells to IFN-gamma's effect, thus providing new therapeutic implications.  相似文献   

6.
7.
8.
Three strains of Streptococcus uberis isolated from dairy cows with mastitis were co-cultured with a bovine mammary epithelial cell line (MAC-T) in Dulbecco's modified Eagle's medium without fetal bovine serum. Protein profiles from culture supernatants and bacterial pellets among different treatments were compared by electrophoresis. There were proteins induced or having increased expression in both supernatant and surface-associated samples from S. uberis co-cultured with MAC-T cells. Some of these proteins were recognized by antibodies in serum obtained from a cow infected by S. uberis . In supernatant samples, there were two distinct protein bands at 35 and 36.8 kDa for all three strains of S. uberis co-cultured with MAC-T cells. These two bands were absent when bacterial protein synthesis was inhibited by chloramphenicol. This study clearly indicates that bacterial protein expression was regulated in response to co-culture with mammary epithelial cells.  相似文献   

9.
10.
Branched-chain amino acids (BCAA) are actively taken up and catabolized by the mammary gland during lactation for syntheses of glutamate, glutamine and aspartate. Available evidence shows that the onset of lactation is associated with increases in circulating levels of cortisol, prolactin and glucagon, but decreases in insulin and growth hormone. This study determined the effects of physiological concentrations of these hormones on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 3 mM d-glucose, 0.5 mM l-leucine, l-[1-14C]leucine or l-[U-14C]leucine, and 0–50 μU/mL insulin, 0–20 ng/mL growth hormone 0–200 ng/mL prolactin, 0–150 nM cortisol or 0–300 pg/mL glucagon. Increasing extracellular concentrations of insulin did not affect leucine transamination or oxidative decarboxylation, but decreased the rate of oxidation of leucine carbons 2–6. Elevated levels of growth hormone dose dependently inhibited leucine catabolism, α-ketoisocaproate (KIC) production and the syntheses of glutamate plus glutamine. In contrast, cortisol and glucagon increased leucine transamination, leucine oxidative decarboxylation, KIC production, the oxidation of leucine 2–6 carbons and the syntheses of glutamate plus glutamine. Prolactin did not affect leucine catabolism in the cells. The changes in leucine degradation were consistent with alterations in abundances of BCAA transaminase and phosphorylated levels of branched-chain α-ketoacid dehydrogenase. Reductions in insulin and growth hormone but increases in cortisol and glucagon with lactation act in concert to stimulate BCAA catabolism for glutamate and glutamine syntheses. These coordinated changes in hormones may facilitate milk production in lactating mammals.  相似文献   

11.
Syn Kok Yeo 《Autophagy》2016,12(10):1960-1961
Intra-tumor heterogeneity can be attributed in part to the ability of tumor cells to acquire traits associated with less differentiated cells. In MMTV-PyMT mammary tumors, this hierarchical heterogeneity can be illustrated with the use of ITGB1/CD29hi ITGB3/CD61+ markers to enrich for mammary stem-like cells and ALDH+ to identify luminal progenitor-like cells. Macroautophagy/autophagy appears to be important for maintaining the cancer stem-like traits of both these populations. Interestingly, the regulation of these distinct cancer stem-like cells by autophagy occurs through EGFR-STAT3 and TGFB/TGF-β-SMAD pathways, respectively. These findings indicate that autophagy plays a significant role in cancer stem-like cells, and distinct cancer stem-like cells within a tumor may require different treatment modalities.  相似文献   

12.
13.
14.
15.
Initial rates of glucose entry into isolated bovine mammary epithelial cells display moderate degrees of asymmetry and cooperative interactions between export and import sites. The present study examined the hypothesis that these kinetic features are due to compartmentalization of intracellular glucose. Net uptake of 3-O-methyl-d-[1-(3)H]glucose (3-OMG) by isolated bovine mammary epithelial cells was measured at 37 degrees C. The time course of 3-OMG net uptake was better fitted by a double-exponential equation than by a single- or triple-exponential equation. Compartmental analysis of the time course curve suggested that translocated 3-OMG is distributed into two compartments with fractional volumes of 32.6 +/- 5.7% and 67.4 +/- 5.7%, respectively. The results support the view that glucose transport in bovine mammary epithelial cells is a multistep process consisting of two serial steps: fast, carrier-mediated, symmetric translocation of sugar across the cell plasma membrane into a small compartment and subsequent slow exchange of posttranslocated sugar between two intracellular compartments. A three-compartment model of this system successfully simulated the observed time course of 3-OMG net uptake and the observed dependence of unidirectional entry rates on intra- and extracellular 3-OMG concentrations. Simulations indicated that backflux of radiolabeled sugar from the small compartment to extracellular space during 15 s of incubation gives rise to the apparent asymmetry, trans-stimulation, and cooperativity of mammary glucose transport kinetics. The fixed-site carrier model overestimated the rate of glucose accumulation in cells, and its features can be accounted for by the compartmentalization of intracellular sugar.  相似文献   

16.
Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.  相似文献   

17.
Abnormalities in the interactions of cells with the extracellular matrix (ECM) play an important role in the development and progression of many types of cancer and are a hallmark of malignant transformation. The dystroglycan (DG) complex is a transmembrane glycoprotein that forms a continuous link from the ECM to the actin cytoskeleton, providing structural integrity and perhaps transducing signal, in a manner similar to integrins. Deregulated expression of DG has been reported in a variety of human malignancies and related to tumor differentiation and aggressiveness. In breast cancer, reduced DG expression has been associated with patient survival and with loss of differentiation of tumor cells. Limited data are available on DG physiology in epithelial cells. In this study, we used the HC11 spontaneously immortalized murine mammary epithelial cells to study DG function(s) and regulation in normal cells. We found that expression of DG protein and mRNA is cell-cycle and cell-density regulated in these cells. Moreover, expression of both DG subunits increased upon lactogenic differentiation of the HC11 cells. The turnover of cell-surface-expressed DG was evaluated in the same cells and half-life of DG subunits was evaluated to be about 12 h. DG-specific small inhibitory RNAs were used to analyze the effects of a reduced expression of DG in these cells. Cells in which DG expression was suppressed were growth inhibited, accumulated in the S-phase of the cell cycle, failed to undergo lactogenic differentiation, and displayed an increase in the percentage of apoptotic cells. Moreover, changes were observed in the expression and/or activity of several molecules involved in cell growth control. These results demonstrate that DG expression is tightly regulated in normal mammary epithelial cells and support the hypothesis that DG is involved in several functions other than structural integrity in these cells. This finding provides new insight into the roles played by DG in epithelial cell physiology and will contribute to our understanding of its involvement in the process of epithelial cell transformation.  相似文献   

18.
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.  相似文献   

19.
Lipopolysaccharide (LPS)-binding protein (LBP) plays a crucial role in the recognition of bacterial components, such as LPS that causes an immune response. The aim of this study was to compare the different effects of recombinant bovine wild LBP and mutant LBP (67 Ala?→?Thr) on the LPS-induced inflammatory response of bovine mammary epithelial cells (BMECs). When BMECs were treated with various concentrations of recombinant bovine lipopolysaccharide-binding protein (RBLBP) (1, 5, 10, and 15 μg/mL) for 12 h, RBLBP of 5 μg/mL increased the apoptosis of BMECs induced by LPS without cytotoxicity, and mutant LBP resulted in a higher cell apoptosis than wild LBP did. By gene-chip microarray and bioinformatics, the data identified 2306 differentially expressed genes that were changed significantly between the LPS-induced inflamed BMECs treated with 5 μg/mL of mutant LBP and the BMECs only treated with 10 μg/mL of LPS (fold change ≥2). Meanwhile, 1585 genes were differently expressed between the inflamed BMECs treated with 5 μg/mL of wild LBP and 10 μg/mL of LPS-treated BMECs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these differentially expressed genes were involved in different pathways that regulate the inflammation response. It predicted that carriers of this mutation increase the risk for a more severe inflammatory response. Our study provides an overview of the gene expression profile between wild LBP and mutant LBP on the LPS-induced inflammatory response of BMECs, which will lead to further understanding of the potential effects of LBP mutations on bovine mammary glands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号