首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: Exosomes are small membrane vesicles secreted by several cell types during exocytic fusion of multivesicular bodies with the plasma membrane. Exosomes from tumour cells can transfer antigens from cell to cell, a property favouring antigen-specific immune responses in vitro and in vivo, and are thus an interesting putative therapeutic tool in human cancers. Exosomes have been well studied in EBV (Epstein-Barr virus)-transformed human B-cell lines; however, biological stimuli regulating exosome secretion quantitatively and/or qualitatively still remain poorly defined. RESULTS: We analysed the effect of the BCR stimulation on exosome release in the human follicular lymphoma B-cell line DOHH2. We found that BCR (B-cell receptor) triggering of DOHH2 cells induced the polarization of CD63(+) MHC class II compartments. Moreover, BCR stimulation increased the release of exosome-associated proteins in the extracellular space. Finally, we found that the BCR was expressed at the surface of exosomes, and could target a bound anti-human IgG to these vesicles. CONCLUSIONS: BCR can modulate the protein content of exosomes upon stimulation, and can target its bound antigen to these vesicles.  相似文献   

2.
Antigen-specific interactions between B cells and T cells are essential for the generation of an efficient immune response. Since this requires peptide–MHC class II complexes (pMHC-II) on the B cell to interact with TCR on antigen-specific T cells, we have examined the mechanisms regulating the persistence, loss, and secretion of specific pMHC-II complexes on activated B cells. Using a mAb that recognizes specific pMHC-II, we found that activated B cells degrade approximately 50% of pMHC-II every day and release 12% of these pMHC-II from the cell on small membrane vesicles termed exosomes. These exosomes directly stimulate primed, but not naïve, CD4 T cells. Interestingly, engagement of antigen-loaded B cells with specific CD4 T cells stimulates exosome release in a manner that can be mimicked by pMHC-II crosslinking. Biochemical studies revealed that the pMHC-II released on exosomes was previously expressed on the plasma membrane of the B cells, suggesting that regulated exosome release from activated B cells is a mechanism to allow pMHC-II to escape intracellular degradation and decorate secondary lymphoid organs with membrane-associated pMHC-II complexes.  相似文献   

3.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

4.
Naive B cells can alter the effector function of their Ig molecule by isotype switching, thereby allowing them to secrete not only IgM, but also the switched isotypes IgG, IgA, and IgE. Different isotypes are elicited in response to specific pathogens. Similarly, dysregulated production of switched isotypes underlies the development of various diseases, such as autoimmunity and immunodeficiency. Thus, it is important to characterize mediators controlling isotype switching, as well as their contribution to the overall B cell response. Isotype switching in human naive B cells can be induced by CD40L together with IL-4, IL-10, IL-13, and/or TGF-beta. Recently, IL-21 was identified as a switch factor for IgG1 and IgG3. However, the effect of IL-21 on switching to IgA, as well as the interplay between IL-21 and other switch factors, remains unknown. We found that IL-4 and IL-21 individually induced CD40L-stimulated human naive B cells to undergo switching to IgG, with IL-4 predominantly inducing IgG1(+) cells and IL-21 inducing IgG3. Culture of naive B cells with CD40L and IL-21, but not IL-4, also yielded IgA(+) cells. Combining IL-4 and IL-21 had divergent effects on isotype switching. Specifically, while IL-4 and IL-21 synergistically increased the generation of IgG1(+) cells from CD40L-stimulated B cells, IL-4 concomitantly abolished IL-21-induced switching to IgA. Our findings demonstrate the dynamic interplay between IL-4 and IL-21 in regulating the production of IgG subclasses and IgA, and suggest temporal roles for these cytokines in humoral immune responses to specific pathogens.  相似文献   

5.
B cells spontaneously process their endogenous Ig and present V region peptides on their MHC class II molecules. We have here investigated whether B cells collaborate with V region-specific CD4+ T cells in vivo. By use of paired Ig L chain-transgenic and TCR-transgenic mice and cell transfer into normal hosts, we demonstrate that B cell presentation of a V(L) region peptide to CD4+ T cells results in germinal centers, plasma cells, and Ab secretion. Because the transgenic B cells have a fixed L chain but polyclonal H chains, their B cell receptor (BCR) repertoire is diverse and may bind a multitude of ligands. In a hapten-based system, BCR ligation concomitant with V region-driven T-B collaboration induced germinal center formation and an IgM --> IgG isotype switch. In the absence of BCR ligation, mainly IgM was produced. Consistent with this, prolonged V region-driven T-B collaboration resulted in high titers of IgG autoantibodies against ubiquitous self-Ags, while natural-type Abs against exotic bacteria remained IgM. Taken together, V region-driven T-B collaboration may explain induction of natural IgM Abs (absence of BCR ligation) and IgG autoantibodies (BCR ligation by autoantigen) and may be involved in the development of autoimmunity.  相似文献   

6.
In the present study the capacity of early fetal B cells to produce Ig was investigated. It is shown that B cells from fetal liver, spleen, and bone marrow (BM) can be induced to produce IgM, IgG, IgG4, and IgE, but not IgA, in response to IL-4 in the presence of anti-CD40 mAb or cloned CD4+ T cells. Even splenic B cells from a human fetus of only 12 wk of gestation produced these Ig isotypes. IFN-alpha, IFN-gamma, and transforming growth factor-beta inhibited IL-4-induced IgE production in fetal B cells, as described for mature B cells. The majority of B cells in fetal spleen expressed CD5 and CD10 and greater than 99% of B cells in fetal BM were CD10+. Highly purified CD10+, CD19+ immature B cells and CD5+, CD19+ B cells could be induced to produce Ig, including IgG4 and IgE, in similar amounts as unseparated CD19+ B cells. Virtually all CD19+ cells still expressed CD10 after 12 days of culture. However, the IgE-producing cells at the end of the culture period were found in the CD19-,CD10- cell population, suggesting differentiation of CD19+,CD10+ B cells into CD19-,CD10- plasma cells. Pre-B cells are characterized by their lack of expression of surface IgM (sIgM). Only 30 to 40% of BM B cells expressed sIgM. However, in contrast to sIgM+,CD10+,CD19+ immature B cells, sorted sIgM-,CD10+,CD19+ pre-B cells failed to differentiate into Ig-secreting cells under the present culture conditions. Addition of IL-6 to these cultures was ineffective. Taken together, these results indicate that fetal CD5+ and CD10+ B cells are mature in their capacity to be induced to Ig isotype switching in vitro as soon as they express sIgM.  相似文献   

7.
The initiation by Th cells of B cell proliferation and differentiation to produce Ig involves both cell contact- and lymphokine-mediated signals. Plasma membrane-enriched fractions from stimulated, but not unstimulated, Th cells induced Ag nonspecific and MHC unrestricted proliferation of 60 to 70% of small dense B cells. Induction of stimulatory membrane activity was inhibited by cycloheximide, and the activity was eliminated by both protease and heat treatment of membranes. Membrane-stimulated B cells did not differentiate to secrete Ig; however, addition of a lymphokine-containing supernatant from activated Th cells or the combination of IL-4 and IL-5 resulted in substantial Ig production, predominantly of the IgM, IgG1, IgA, and IgE isotypes. The quantity and isotype distribution of the antibodies secreted were similar to those produced after B cell activation by the intact Th cells and Ag. Therefore, membranes from activated Th cells in combination with lymphokines normally secreted by such cells can replace intact Th cells and provide a defined system to identify molecular events important for B cell activation.  相似文献   

8.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

9.
Immunomodulatory role of IL-4 on the secretion of Ig by human B cells   总被引:9,自引:0,他引:9  
The effect of IL-4 on the production of Ig by human B cells was examined. Highly purified B cells were stimulated with Staphylococcus aureus (SA) and IL-4 alone or in combination with various other cytokines and the supernatants assayed for Ig by isotype-specific ELISA. IL-4 (10 to 100 U/ml) did not support Ig secretion by SA-stimulated blood, spleen, or lymph node B cells, whereas IL-2 supported the production of all isotypes including IgE. Moreover, IL-4 suppressed the production of all isotypes of Ig by B cells stimulated with SA and IL-2 including IgG1, IgG2, and IgE. IL-4-mediated suppression was partially reversed by IFN-gamma or -alpha and low m.w. B cell growth factor. TNF-alpha and IL-6 did not reverse the IL-4-induced suppression of Ig production. The inhibitory action of IL-4 on Ig production appeared to depend on the polyclonal activator used to stimulate the B cells. Thus, Ig secretion by B cells activated by LPS and supported by IL-2 was not inhibited by IL-4. Whereas IL-4 alone supported minimal Ig production by LPS-activated B cells, it augmented production of all Ig isotypes in cultures stimulated with LPS and supported by IL-2. IFN-gamma further enhanced production of Ig in these cultures. When the effect of IL-4 on the responsiveness of B cells preactivated with SA and IL-2 was examined, it was found not to inhibit but rather to promote Ig production modestly. A direct effect of IL-4 on the terminal differentiation of B cells was demonstrated using B lymphoblastoid cell lines. IL-4 was able to enhance the Ig secreted by an IgA-secreting hybridoma, 219 and by SKW6-CL-4, an IL-6-responsive IgM-secreting EBV transformed B cell line. These results indicate that IL-4 exerts a number of immunoregulatory actions on human B cell differentiation. It interferes with the activation of B cells by SA and IL-2, but promotes the differentiation of preactivated B cells, B cell lines, and B cells activated by LPS without apparent isotype specificity.  相似文献   

10.
A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.  相似文献   

11.
Dendritic cells (DCs) orchestrate innate inflammatory responses and adaptive immunity through T-cell activation via direct cell–cell interactions and/or cytokine production. Tolerogenic DCs (tolDCs) help maintain immunological tolerance through the induction of T-cell unresponsiveness or apoptosis, and generation of regulatory T cells. Mesenchymal stromal cells (MSCs) are adult multipotent cells located within the stroma of bone marrow (BM), but they can be isolated from virtually all organs. Extracellular vesicles and exosomes are released from inflammatory cells and act as messengers enabling communication between cells. To investigate the effects of MSC-derived exosomes on the induction of mouse tolDCs, murine adipose-derived MSCs were isolated from C57BL/6 mice and exosomes isolated by ExoQuick-TC kits. BM-derived DCs (BMDCs) were prepared and cocultured with MSCs-derived exosomes (100 μg/ml) for 72 hr. Mature BMDCs were derived by adding lipopolysaccharide (LPS; 0.1μg/ml) at Day 8 for 24 hr. The study groups were divided into (a) immature DC (iDC, Ctrl), (b) iDC + exosome (Exo), (c) iDC + LPS (LPS), and (d) iDC + exosome + LPS (EXO + LPS). Expression of CD11c, CD83, CD86, CD40, and MHCII on DCs was analyzed at Day 9. DC proliferation was assessed by coculture with carboxyfluorescein succinimidyl ester-labeled BALB/C-derived splenocytes p. Interleukin-6 (IL-6), IL-10, and transforming growth factor-β (TGF-β) release were measured by enzyme-linked immunosorbent assay. MSC-derived exosomes decrease DC surface marker expression in cells treated with LPS, compared with control cells ( ≤ .05). MSC-derived exosomes decrease IL-6 release but augment IL-10 and TGF-β release (p ≤ .05). Lymphocyte proliferation was decreased (p ≤ .05) in the presence of DCs treated with MSC-derived exosomes. CMSC-derived exosomes suppress the maturation of BMDCs, suggesting that they may be important modulators of DC-induced immune responses.  相似文献   

12.
IL-4 promotes IgG1 and IgE secretion by murine B cells stimulated with bacterial LPS. We show that stimulation of unprimed resting splenic B cells with LPS and 10(4) U/ml rIL-4 results in the expression of membrane (m) IgG1 and mIgE on 40 to 50% and 15 to 25% of the total B cell population, respectively, on day 4 of culture. The possibility of a significant contribution to cell surface staining by cytophilic, secreted Ig isotypes was eliminated by either the addition of anti-Fc gamma or anti-Fc epsilon R mAb during the culture or by acid treatment before staining. A similar proportion of IgE-expressing B cells are also found, after stimulation with LPS and 10(4) U/ml IL-4, by cytoplasmic staining using fluorescence microscopy. Cell sorting analysis further indicates that B cell populations that express mIgG1 and mIgE secrete these respective Ig isotypes. In addition, such cells show striking diminution in IgM secretion compared to mIgG1- or mIgE- sorted B cells. Stimulation with LPS and IL-4 (10(4) U/ml) induces co-expression of mIgG1 and mIgE on LPS-stimulated B cells; up to 75% of mIgE+ B cells co-express mIgG1 and up to 19% of mIgG1+ B cells express mIgE. This striking co-expression of mIgG1 and mIgE is mirrored by the co-expression of mIgG1 with mIgG3 and mIgG2b by B cells stimulated with LPS and 200 U/ml IL-4. Cell sorting analysis demonstrates that the B cell population that co-expresses mIgG1 and mIgE secretes both IgG1 and IgE. However, "two-color" cytoplasmic staining fails to demonstrate any B cells that simultaneously secrete both IgG1 and IgE.  相似文献   

13.
Yang C  Chalasani G  Ng YH  Robbins PD 《PloS one》2012,7(4):e36138
Mycoplasmas cause numerous human diseases and are common opportunistic pathogens in cancer patients and immunocompromised individuals. Mycoplasma infection elicits various host immune responses. Here we demonstrate that mycoplasma-infected tumor cells release exosomes (myco+ exosomes) that specifically activate splenic B cells and induce splenocytes cytokine production. Induction of cytokines, including the proinflammatory IFN-γ and the anti-inflammatory IL-10, was largely dependent on the presence of B cells. B cells were the major IL-10 producers. In splenocytes from B cell deficient μMT mice, induction of IFN-γ+ T cells by myco+ exosomes was greatly increased compared with wild type splenocytes. In addition, anti-CD3-stimulated T cell proliferation was greatly inhibited in the presence of myco+ exosome-treated B cells. Also, anti-CD3-stimulated T cell signaling was impaired by myco+ exosome treatment. Proteomic analysis identified mycoplasma proteins in exosomes that potentially contribute to the effects. Our results demonstrate that mycoplasma-infected tumor cells release exosomes carrying mycoplasma components that preferentially activate B cells, which in turn, are able to inhibit T cell activity. These results suggest that mycoplasmas infecting tumor cells can exploit the exosome pathway to disseminate their own components and modulate the activity of immune cells, in particular, activate B cells with inhibitory activity.  相似文献   

14.
Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.  相似文献   

15.
Exosomes are nano-sized membrane vesicles released from a wide variety of cells, formed in endosomes by inward budding of the endosomal limiting membrane. They have immune stimulatory-, inhibitory-, or tolerance-inducing effects, depending on their cellular origin, which is why they are investigated for use in vaccine and immune therapeutic strategies. In this study, we explored whether exosomes of different origins and functions can selectively target different immune cells in human peripheral blood. Flow cytometry, confocal laser scanning microscopy, and multispectral imaging flow cytometry (ImageStream) revealed that exosomes derived from human monocyte-derived dendritic cells and breast milk preferably associated with monocytes. In contrast, exosomes from an EBV-transformed B cell line (LCL1) preferentially targeted B cells. This was not observed for an EBV(-) B cell line (BJAB). Electron microscopy, size-distribution analysis (NanoSight), and a cord blood transformation assay excluded the presence of virions in our LCL1 exosome preparations. The interaction between LCL1-derived exosomes and peripheral blood B cells could be blocked efficiently by anti-CD21 or anti-gp350, indicating an interaction between CD21 on B cells and the EBV glycoprotein gp350 on exosomes. The targeting of LCL1-derived exosomes through gp350-CD21 interaction strongly inhibited EBV infection in B cells isolated from umbilical cord blood, suggesting a protective role for exosomes in regulating EBV infection. Our finding also suggests that exosome-based vaccines can be engineered for specific B cell targeting by inducing gp350 expression.  相似文献   

16.
Activated T lymphocytes release vesicles, termed exosomes, enriched in cholesterol and exposing phosphatidylserine (PS) at their outer membrane leaflet. Although CD4(+) activated T lymphocytes infiltrate an atherosclerotic plaque, the effects of T cell exosomes on the atheroma-associated cells are not known. We report here that exosomes isolated from the supernatants of activated human CD4(+) T cells enhance cholesterol accumulation in cultured human monocytes and THP-1 cells. Lipid droplets found in the cytosol of exosome-treated monocytes contained both cholesterol ester and free cholesterol. Anti-phosphatidylserine receptor antibodies recognized surface protein on the monocyte plasma membrane and prevented exosome-induced cholesterol accumulation, indicating that exosome internalization is mediated via endogenous phosphatidylserine receptor. The production of proinflammatory cytokine TNF-alpha enhanced in parallel with monocyte cholesterol accumulation. Our data strongly indicate that exosomes released by activated T cells may represent a powerful, previously unknown, atherogenic factor.  相似文献   

17.
Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted apoptosis of mouse splenic B cells. This resulted from specific blockade of NF-kappa B induction, which normally inhibits apoptosis. LPS- or B cell receptor (BCR)-induced proliferation was not inhibited by these treatments, and mAb-induced association of CD40 with other B cell surface molecules did not have these effects. Addition of BCR or IL-4 signals did not overcome the effect of ICAM-1 or MHC II on CD40-induced proliferation. FasL expression was not detected in B cell populations. These results show that MHC II and ICAM-1 specifically modulate CD40-mediated signaling, so inhibiting proliferation and preventing inhibition of apoptosis.  相似文献   

18.
Monoclonal antibodies against the TCR/CD3 complex are capable of activating T cells which in turn may induce immunoglobulin synthesis in B cells under appropriate conditions. Here we present evidence that distinct immune responses, induced by four commonly used TCR/CD3 mAb (Leu4, OKT3, BMA030, BMA031) were related to the mAb interaction with monocyte Fc receptors for IgG. Depending on their isotype and on the technique by which they were crosslinked, TCR/CD3 mAb induced variable IgM and IgG synthesis in PBMC: If the mAb were crosslinked by monocyte IgG-Fc receptors they induced a high Ig production, while crosslinking the same mAb by plastic-bound goat anti-mouse antibodies (panning) failed to do so. Nevertheless, both crosslinking techniques triggered a strong proliferation and IL-2, IL-4, and IFN gamma lymphokine gene expression. The lack of Ig production under panning conditions was due to an additional IgG-Fc receptor interaction with monocytes: (a) If namely mAb F(ab')2 fragments, or mAb isotypes unable to bind to monocyte Fc receptors (IgG2b, IgG1 in nonresponders) were crosslinked by panning, both a good proliferation as well as Ig production ensued; (b) if TCR/CD3 mAb isotypes which could additionally bind to monocyte Fc receptor (IgG2a) were crosslinked, no Ig production occurred; (c) if mAb F(ab')2 fragments were crosslinked with a second anti-T cell antibody of IgG2a isotype, which could bind to monocyte Fc receptors, Ig synthesis was reduced. Interestingly enough, this diminishing effect, due to monocyte Fc receptor interaction, was only observed if CD4-positive cells were proliferating, but not if CD8-positive cells were activated.  相似文献   

19.
Isotype switching by murine B cells follows a pattern whereby the proportion of cells undergoing switching increases with division number and is regulated by cytokines. Here we explored whether human B cells behaved in a similar manner. The effect of IL-4, IL-10, and IL-13, alone or in combination, on Ig isotype switching by highly purified naive human CD40 ligand (CD40L)-activated B cells was measured against division number over various harvest times. Switching to IgG was induced by IL-4 and, to a lesser extent, IL-13 and IL-10. The combination of IL-10 with IL-4, but not IL-13, induced a higher percentage of cells to undergo switching. Isotype switching to IgG by human CD40L-activated naive B cells was found to be linked to the division history of the cells: IgG(+) cells appeared in cultures of B cells stimulated with CD40L and IL-4 after approximately the third cell division, with the majority expressing IgG1, thus revealing a predictable pattern of IgG isotype switching. These results reveal a useful quantitative framework for monitoring the effects of cytokines on proliferation and isotype switching that should prove valuable for screening Ig immunodeficiencies and polymorphisms in the population for a better understanding of the regulation of human humoral immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号