首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着生物技术的发展, 研究人员构建出了大量具有特定功能的基因工程微生物, 这些基因工程微生物在实际应用时常受到限制, 因为它们释放到环境中有可能带来新的污染。为了减少或消除其对环境的潜在危害, 有必要采取措施对这些基因工程微生物进行监测和安全控制。通常要求这类基因工程微生物带有便于监测的检测标记以及能进行自消亡的主动生物防御体系。对基因工程微生物的检测标记以及主动生物防御体系的研究现状进行了综述。  相似文献   

2.
李琴  伍一军 《微生物学报》2008,24(3):355-362
随着生物技术的发展, 研究人员构建出了大量具有特定功能的基因工程微生物, 这些基因工程微生物在实际应用时常受到限制, 因为它们释放到环境中有可能带来新的污染。为了减少或消除其对环境的潜在危害, 有必要采取措施对这些基因工程微生物进行监测和安全控制。通常要求这类基因工程微生物带有便于监测的检测标记以及能进行自消亡的主动生物防御体系。对基因工程微生物的检测标记以及主动生物防御体系的研究现状进行了综述。  相似文献   

3.
The deliberate or accidental release of genetically engineered microorganisms (GEMs) in the environment has led to some questions concerning microbial survival, transfer of DNA to the indigenous microflora and environmental consequences. Amongst horizontal gene transfer mechanisms, conjugation is probably the most frequent in the environment. With the aim of evaluating risks associated with environmental release of GEMs and their engineered DNA, studies of conjugative gene transfer between a donor strain and indigenous microflora have been conducted. Such studies required the development of a donor counterselection system to prevent growth of donor cells on transconjugant selective plates. This review summarizes the known and potential donor counterselection systems.  相似文献   

4.
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.  相似文献   

5.
转基因微生物生态学及大田释放风险评价研究   总被引:15,自引:4,他引:11  
向环境中释放转基因微生物可能会带来一系列的安全问题.在大面积释放之前必须对转基因微生物在环境中发生基因转移的潜力、存活能力、扩散能力及对生态系统的潜在影响等进行生态学研究和风险评价,同时还要探索有效的检测方法和风险评价策略.该研究有助于分子生态学的发展和生物技术的安全应用,具有重要的理论和实践意义.  相似文献   

6.
The release of genetically engineered microorganisms (GEMs) into the environment has, as its main aims, the benefits of improved agricultural yield and control of environmental pollution. However, effective and safe release programmes necessitate the development of sensitive, selective detection methods to monitor the environmental impact of released organisms.  相似文献   

7.
ABSTRACT

This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.  相似文献   

8.
Abstract Leaching of genetically engineered microbes (GEMs) through soil is a significant concern related to groundwater quality. The objective of this study was to examine the leaching, survival and gene transfer of a genetically engineered microbe and indigenous recipients of pR68.45 in nonsterile, undisturbed soil columns. Pseudomonas aeruginosa PAO25, containing the plasmid R68.45, was added to the surface of undisturbed soil columns (10 cm diameter × 80 cm length). Unsaturated flow conditions were maintained by 100 ml daily additions of 2 mM CaCl2 for a period of 70 days. The population of the GEM exhibited a significant ( P = 0.05) linear decline with time. The GEM leached only to a depth of 30–40 cm in 70 days. Transfer of pR68.45 was shown to occur from P. aeruginosa into the indigenous bacterial population although relatively low numbers of transconjugants were observed (log 2 cfu g−1 dry soil). The number of transconjugants also decreased with depth and time. Leaching of transconjugants, however, occured more readily than that of the GEM, probably as a result of plasmid transfer into smaller, more mobile bacteria. At 70 days incubation, no GEMs were detected in the columns, while transconjugants were observed at several depths. These results demonstrate the importance of examining both the survival and movement of GEMs and transconjugants in soil.  相似文献   

9.
Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s).  相似文献   

10.
Genetically engineered microorganisms (GEMs) have shown potential for bioremediation applications in soil, groundwater, and activated sludge environments, exhibiting enhanced degradative capabilities encompassing a wide range of chemical contaminants. However, the vast majority of studies pertaining to genetically engineered microbial bioremediation are supported by laboratory-based experimental data. In general, relatively few examples of GEM applications in environmental ecosystems exist. Unfortunately, the only manner in which to fully address the competence of GEMs in bioremediation efforts is through long-term field release studies. It is therefore essential that field studies be performed to acquire the requisite information for determining the overall effectiveness and risks associated with GEM introduction into natural ecosystems.  相似文献   

11.
The principal concern about releasing genetically engineered microorganisms (GEMs) into the environment is their potential adverse effects on the environment, whether caused directly or indirectly by the GEMs. The effects of five GEMs on ammonification, nitrification, and denitrification in soil were studied. With the possible exception of a strain of Enterobacter cloacae carrying a plasmid, no consistent statistically or ecologically significant differences in effects on these processes or on the population dynamics of the microorganisms responsible for the processes were observed between soils inoculated with the GEMs or their homologous plasmidless hosts and those that were not inoculated. Increasing the concentration of montmorillonite in the soil enhanced the rate of nitrification, regardless of the inoculum, indicating that the perfusion technique used was sensitive enough to detect changes in nitrification rates when they occurred.  相似文献   

12.
Many methods for detecting model genetically engineered microorganisms (GEMs) in experimental ecosystems rely on cultivation of introduced cells. In this study, survival of Escherichia coli was monitored with the green fluorescent protein (GFP) gene. This approach allowed enumeration of GEMs by both plating and microscopy. Use of the GFP-marked GEMs revealed that E. coli persisted in stream water at higher densities as determined microscopically than as determined by CFU enumeration. The GFP gene did not negatively impact the fitness of the host strain.  相似文献   

13.
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed.  相似文献   

14.
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed.  相似文献   

15.
This review considers the reasons for, and research governing, the regulation and monitoring of genetically engineered micro-organisms and viruses (GEMs) released into the environment. The hazards associated with releasing GEMs into the environment are the creation and evolution of new pests and diseases, and damage to the ecosystem and non target species. The similarities and differences between GEMs and conventional micro-organisms are discussed in relation to risk assessment. Other issues covered include the persistence of micro-organisms in the environment, transgene dispersal to non-engineered microbes and other organisms, the effects of transgenes and transformation on fitness, and the evolution of pests and pathogens that are given or acquire transgenes. Areas requiring further research are identified and recommendations for risk assessment made.  相似文献   

16.
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.  相似文献   

17.
This review examines the potential for change in microbial diversity, with the emphasis on bacteria, in soil resulting from the introduction of genetically engineered microorganisms (GEMs). With the advent of GEMs came the impetus for new technologies to recover these micro-organisms from soil and to assess their effects on microbial diversity. This review also presents general aspects of and genetic approaches to accessing bacterial diversity in the environment.  相似文献   

18.
由于存在基因工程微生物(GEMs)不受控制地在环境中释放的风险, 利用GEMs的生物降解能力治理环境污染的方法受到了限制。在大肠杆菌JM109中构建了一个受环境污染物调控的细菌遏制系统, 该系统是由杀伤元件和调控元件组成的双质粒体系, 使细菌的存活受环境中水杨酸盐浓度的调控。当培养基含水杨酸盐时, 阻遏蛋白LacI合成, 阻止自杀基因gef表达, 细菌快速繁殖; 当水杨酸盐不存在时, 自杀基因gef的表达导致细胞杀伤, 菌体大量死亡。该遏制系统可作为模型用于具有生物修复功能的基因工程菌的构建。  相似文献   

19.
Summary The effectiveness of gene probe methods for tracking genetically engineered microorganisms (GEMs) in the environment was tested by inoculating nutrient-supplemented freshwater microcosms withAlcaligenes A5 (a naturally occurring 4-chlorobiphenyl degrader) orPseudomonas cepacia AC1100 (a genetically engineered 2, 4, 5 T-degrader) and following the fates of the introduced bacterial populations. Colony hybridization of the viable heterotrophic bacterial populations and dot blot hybridization of DNA recovered from the total microcosm microbial communities showed persistence of bothAlcaligenes A5 andP. cepacia AC1100 in the microcosms in the presence and absence of the xenobiotic substrates that these organisms biodegrade. Although there was a gradual decline in the added populations, both of the bacterial populatins were still detected in the microcosms two months after their introduction into the microcosms. Addition of 2, 4, 5-T enhanced the survival ofP. cepacia AC1100 — and 4-chlorobiphenyl addition resulted in increased levels ofAlcaligenes A5. The results indicate that both organisms may persist for very long periods in freshwater habitats.  相似文献   

20.
We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号