首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The α1(VI) and α2(VI) chains of type VI collagen (nonfibrillar) are highly similar and are encoded by single-copy genes in close proximity on human Chromosome (Chr) 21q22.3, a gene-rich region that has proved refractory to cloning. For the α1(VI) chain, only the regions encoding the triple-helical and the promoter have been characterized hitherto. To facilitate our study of the role of this gene in the phenotype of Down syndrome, we have cloned and sequenced the amino- and carboxyl-terminal globular domains of COL6A1. The amino-terminal domain consists of seven exons and the carboxyl-terminal globular domain of nine exons. Together with the exons of the triple-helical domain, COL6A1 is encoded by a total of 36 exons spanning approximately 30 kb. Comparison of the genomic organization of COL6A1 and COL6A2 revealed that despite the similarity within their triple-helical domains, the intron-exon structures of their globular domains differ markedly. Conservation is limited to the exons encoding amino acids immediately adjacent to the triple-helical region, including the cysteine residues essential for the structure of mature collagen VI. The intron-exon structures of these two genes are highly similar to the collagen VI genes of chicken. These data suggest that COL6A1 and COL6A2 arose from a gene duplication before the divergence of the reptilian and mammalian lineages. Received: 9 November 1996 / Accepted: 28 December 1996  相似文献   

2.
The fibrillar collagens provide structural scaffolding and strength to the extracellular matrices of connective tissues. We identified a partial sequence of a new fibrillar collagen gene in the NCBI databases and completed the sequence with bioinformatic approaches and 5' RACE. This gene, designated COL27A1, is approximately 156 kbp long and has 61 exons located on chromosome 9q32-33. The homologous mouse gene is located on chromosome 4. The gene encodes amino- and carboxyl-terminal propeptides similar to those in the 'minor' fibrillar collagens. The triple-helical domain is, however, shorter and contains 994 amino acids with two imperfections of the Gly-Xaa-Yaa repeat pattern. There were three sites of alternative RNA splicing, only one of which led to the intact mRNA that encodes this full-length collagen proalpha chain. Phylogenetic analyses indicated that COL27A1 forms a clade with COL24A1 that is distinct from the two known lineages of fibrillar collagens. Expression analyses of the mouse col27a1 gene demonstrated high expression in cartilage, the eye and ear, but also in lung and colon. It is likely that the major protein product of COL27A1, proalpha1(XXVII), is a component of the extracellular matrices of cartilage and these other tissues. Study of this collagen should yield insights into normal chondrogenesis, and provide clues to the pathogenesis of some chondrodysplasias and disorders of other tissues in which this gene is expressed.  相似文献   

3.
《Genomics》1995,29(3)
Genes that encode the vertebrate fibrillar collagen types I–III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization ofCOL5A1,the human gene that encodes the α1 chain of fibrillar collagen type V. The structure ofCOL5A1is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I–III.COL5A1has 66 exons, which is greater than the number of exons found in the genes for collagen types I–III. The increased number of exons is partly due to the increased size of the pro-α1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I–III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region ofCOL5A1compared to the organization of the triple-helix coding regions of the genes for collagen types I–III. Of particular interest is the increase of 54 bp exons in this region ofCOL5A1,strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure ofCOL5A1to the highly conserved structure of the genes of collagen types I–III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes.  相似文献   

4.
5.
The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain. Pro(alpha)1(XXVII) mRNA is 9 kb and expressed by chondrocytes but also by a variety of epithelial cell layers in developing tissues including stomach, lung, gonad, skin, cochlear, and tooth. By Western blotting, type XXVII antisera recognized multiple bands of 240-110 kDa in tissue extracts and collagenous bands of 150-140 kDa in the conditioned medium of the differentiating chondrogenic ATDC5 cell line. Phylogenetic analyses revealed that type XXVII, together with the closely related type XXIV collagen gene, form a new, third clade (type C) within the vertebrate fibrillar collagen family. Furthermore, the exon structure of the type XXVII collagen gene is similar to, but distinct from, those of the genes coding for the type A or B clade pro(alpha) chains.  相似文献   

6.
Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO.  相似文献   

7.
8.
9.
A number of overlapping cDNA clones, covering 5.2 kb of sequences which code for the human pro alpha 2(V) collagen chain, have been isolated. Analysis of the structural data have indicated a close evolutionary kinship between the pro alpha 2(V) chain and the major fibrillar collagen types. Isolation and analysis of an 8 kb genomic fragment has further supported this notion by revealing a homologous arrangement of nine triple-helical domain exons. These studies have therefore provided conclusive evidence which categorizes the Type V collagen as a member of the Group 1 molecules, or fibrillar-forming collagens.  相似文献   

10.
Type I collagen is the fundamental component of the extracellular matrix. Its α1 gene is the direct descendant of ancestral fibrillar collagen and contains 57 exons encoding the rod-like triple-helical COL domain. We trace the evolution of the COL domain from a primordial collagen 18 residues in length to its present 1014 residues, the limit of its possible length. In order to maintain and improve the essential structural features of collagen during evolution, exons can be added or extended only in permitted, non-random increments that preserve the position of spatially sensitive cross-linkage sites. Such sites cannot be maintained unless the twist of the triple helix is close to 30 amino acids per turn. Inspection of the gene structure of other long structural proteins, fibronectin and titin, suggests that their evolution might have been subject to similar constraints.  相似文献   

11.
The genes encoding the alpha 1 chain of Type III collagen (COL3A1) and the alpha 2 chain of Type V (COL5A2) collagen have been mapped to the long arm of human chromosome 2. Linkage analysis in CEPH families indicated that these two genes are close to each other, with no recombination in 37 informative meioses. In the present study, DNA probes from the 3' ends of each gene have been physically mapped by pulsed-field gel electrophoresis. The probes recognized 11 macrorestriction fragments in common, ranging from greater than 1000 kb MluI and NotI fragments to a 35-kb SfiI fragment. Therefore, the COL3A1 and COL5A2 genes appear to exist as a gene cluster on chromosome 2. This is the third example of a collagen gene cluster. Other examples include the COL4A1-COL4A2 genes on chromosome 13q and the COL6A1-COL6A2 genes on chromosome 21q. The physical proximity of these genes may indicate common evolution and/or regulation.  相似文献   

12.
Marshall syndrome is a rare, autosomal dominant skeletal dysplasia that is phenotypically similar to the more common disorder Stickler syndrome. For a large kindred with Marshall syndrome, we demonstrate a splice-donor-site mutation in the COL11A1 gene that cosegregates with the phenotype. The G+1-->A transition causes in-frame skipping of a 54-bp exon and deletes amino acids 726-743 from the major triple-helical domain of the alpha1(XI) collagen polypeptide. The data support the hypothesis that the alpha1(XI) collagen polypeptide has an important role in skeletal morphogenesis that extends beyond its contribution to structural integrity of the cartilage extracellular matrix. Our results also demonstrate allelism of Marshall syndrome with the subset of Stickler syndrome families associated with COL11A1 mutations.  相似文献   

13.
Two of the human fibrillar collagen genes, proa1(III) (COL3A1) and proa2(V) (COL5A2), map to the same region of the long arm of chromosome 2. To establish the genetic distance between the two loci, we analyzed the segregation of COL3A1 and COL5A2 RFLPs in five families informative for the two loci specific markers. We found that the maximum lod score was 9.33 at a recombination frequency of theta = 0.00. The data therefore provide strong evidence for tight linkage between two evolutionarily related fibrillar collagen genes on the 2q14----2q32 segment of chromosome 2.  相似文献   

14.
Collagens are members of one of the most important families of structural proteins in higher organisms. There are 28 types of collagens encoded by 43 genes in humans that fall into several different functional protein classes. Mutations in the major fibrillar collagen genes lead to osteogenesis imperfecta (COL1A1 and COL1A2 encoding the chains of Type I collagen), chondrodysplasias (COL2A1 encoding the chains of Type II collagen), and vascular Ehlers-Danlos syndrome (COL3A1 encoding the chains of Type III collagen). Over the past 2 decades, mutations in these collagen genes have been catalogued, in hopes of understanding the molecular etiology of diseases caused by these mutations, characterizing the genotype-phenotype relationships, and developing robust models predicting the molecular and clinical outcomes. To achieve these goals better, it is necessary to understand the natural patterns of variation in collagen genes in human populations. We screened exons, flanking intronic regions, and conserved noncoding regions for variations in COL1A1, COL1A2, COL2A1, and COL3A1 in 48 individuals from each of four ethnically diverse populations. We identified 459 single-nucleotide polymorphisms (SNPs), more than half of which were novel and not found in public databases. Of the 52 SNPs found in coding regions, 15 caused amino acid substitutions while 37 did not. Although the four collagens have similar gene and protein structures, they have different molecular evolutionary characteristics. For example, COL1A1 appears to have been under substantially stronger negative selection than the rest. Phylogenetic analysis also suggests that the four genes have very different evolutionary histories among the different ethnic groups. Our observations suggest that the study of collagen mutations and their relationships with disease phenotypes should be performed in the context of the genetic background of the subjects.  相似文献   

15.
Linkage markers at or close to the genes encoding the three major fibrillar collagens were used to analyze the segregation of these loci in six pedigrees with dominantly inherited Marfan syndrome. Four pedigrees were discordant at one of the Type I collagen loci (COL1A2), and, of these, two were discordant at the other Type I locus (COL1A1). The Marfan syndrome also segregated independently of the structural loci for Type II and Type III collagen in these two families. This is evidence against the Marfan syndrome being, in general, due to mutations in the major fibrillar collagen genes.  相似文献   

16.
L Ala-Kokko  D J Prockop 《Genomics》1990,8(3):454-460
A new procedure for preparing cosmid libraries was used to isolate three alleles for the human gene for type II procollagen (COL2A1). Over 20,000 bp of one allele were completely sequenced and over 10,000 bp of the two other alleles were sequenced. The data located and defined 26 exons and introns of the gene not previously analyzed. The results completed the structure of the gene except for the newly discovered exon 2A that undergoes alternative splicing (Ryan et al., 1990, Trans. Ann. Meet. Orthop. Res. Soc. 15:65). As a result, it is the most completely known structure of a gene for a human fibrillar collagen. The results confirm the previous impression that exon sizes are highly conserved among the genes for the three major fibrillar collagens. Comparison of clones from the three alleles defined five neutral variations in coding sequences and seven variations in the intron that also are probably neutral variations. The normal sequences and the variations in sequences will be important for identifying different alleles and haplotypes of the gene and for the analysis of genetic mutations in the gene that cause diseases of cartilage such as chondrodysplasias and osteoarthritis.  相似文献   

17.
Type IV collagen is a major structural component in basement membranes. It is considerably different from the fibrillar collagens, types I-III. For example, unlike fibrillar collagens, the triple helical domain of type IV collagen is frequently interrupted by nonhelical regions. In this report, we demonstrate several overlapping genomic clones which cover most of the mouse alpha 1(IV) chain. Electron microscopic analysis of R-loops revealed that there were at least 28 exons within 35 kilobases of the gene segment. The sizes of six exons were determined by DNA sequence analysis to be 81, 178, 134, 73, 129, and 213 base pairs. These sizes do not appear to be related to the 54-base pair coding unit which is characteristic of fibrillar collagen exons, suggesting that the alpha 1 type IV collagen gene evolved differently from the fibrillar collagen genes.  相似文献   

18.
Overlapping cDNA clones were isolated for human type II procollagen. Nucleotide sequencing of the clones provided over 2.5 kb of new coding sequences for the human pro alpha 1(II) gene and the first complete amino acid sequence of type II procollagen from any species. Comparison with published data for cDNA clones covering the entire lengths of the human type I and type III procollagens made it possible to compare in detail the coding sequences and primary structures of the three most abundant human fibrillar collagens. The results indicated that the marked preference in the third base codons for glycine, proline and alanine previously seen in other fibrillar collagens was maintained in type II procollagen. The domains of the pro alpha 1(II) chain are about the same size as the same domains of the pro alpha chains of type I and type III procollagens. However, the major triple-helical domain is 15 amino acid residues less than the triple-helical domain of type III procollagen. Comparison of hydropathy profiles indicated that the alpha chain domain of type II procollagen is more similar to the alpha chain domain of the pro alpha 1(I) chain than to the pro alpha 2(I) chain or the pro alpha 1(III) chain. The results therefore suggest that selective pressure in the evolution of the pro alpha 1(II) and pro alpha 1(I) genes is more similar than the selective pressure in the evolution of the pro alpha 2(I) and pro alpha 1(III) genes.  相似文献   

19.
Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.  相似文献   

20.
Fibril-forming collagens in lamprey   总被引:1,自引:0,他引:1  
Five types of collagen with triple-helical regions approximately 300 nm in length were found in lamprey tissues which show characteristic D-periodic collagen fibrils. These collagens are members of the fibril forming family of this primitive vertebrate. Lamprey collagens were characterized with respect to solubility, mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carboxylmethyl-cellulose chromatography, peptide digestion patterns, composition, susceptibility to vertebrate collagenase, thermal stability, and segment long spacing-banding pattern. Comparison with fibril-forming collagens in higher vertebrates (types I, II, III, V, and XI) identified three lamprey collagens as types II, V, and XI. Both lamprey dermis and major body wall collagens had properties similar to type I but not the typical heterotrimer composition. Dermis molecules had only alpha 1(I)-like chains, while body wall molecules had alpha 2(I)-like chains combined with chains resembling lamprey type II. Neither collagen exhibited the interchain disulfide linkages or solubility properties of type III. The conservation of fibril organization in type II/type XI tissues in contrast to the major developments in type I and type III tissues after the divergence of lamprey and higher vertebrates is consistent with these results. The presence of type II and type I-like molecules as major collagens and types V and XI as minor collagens in the lamprey, and the differential susceptibility of these molecules to vertebrate collagenase is analogous to the findings in higher vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号