首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcium clearance mechanisms of mouse sperm   总被引:6,自引:0,他引:6  
The spermatozoon is specialized for a single vital role in fertilization. Past studies show that Ca2+ signals produced by the opening of plasma membrane entry channels initiate several events required for the sperm to reach and enter the egg but reveal little about how resting [Ca2+]i is maintained or restored after elevation. We examined these homeostatic mechanisms by monitoring the kinetics of recovery from depolarizing stimuli under conditions intended to inhibit candidate mechanisms for sequestration or extrusion of Ca2+ from the cytosol. We found that the Ca2+-ATPase pump of the plasma membrane performs the major task of Ca2+ clearance. It is essential in the final stages of recovery to achieve a low resting [Ca2+]i. With immunomethods we found a approximately 130-kD plasma membrane Ca2+-ATPase protein on Western blots of whole sperm extracts and showed immunolocalization to the proximal principal piece of the flagellum. The plasma membrane Na+-Ca2+ exchanger also exports Ca2+ when [Ca2+]i is elevated. Simultaneous inhibition of both mechanisms of extrusion revealed an additional contribution to clearance from a CCCP-sensitive component, presumably sequestration by the mitochondria. Involvement of SERCA pumps was not clearly detected. Many aspects of the kinetics of Ca2+ clearance observed in the presence and absence of inhibitors were reproduced in a mathematical model based on known and assumed kinetic parameters. The model predicts that when cytosolic [Ca2+] is at 1 microM, the rates of removal by the Ca2+-ATPase, Na+-Ca2+-exchanger, mitochondrial uniporter, and SERCA pump are approximately 1.0, 0.35, 0.33, and 0 micromole l(-1) s(-1), rates substantially slower than those reported for other cells studied by similar methods. According to the model, the Na+-Ca2+ exchanger is poised so that it may run in reverse at resting [Ca2+]i levels. We conclude that the essential functions of sperm do not require the ability to recover rapidly from globally elevated cytosolic [Ca2+].  相似文献   

3.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

4.
5.
M Sedova  L A Blatter 《Cell calcium》1999,25(5):333-343
The dynamic regulation of Ca2+ extrusion by the plasma membrane Ca(2+)-ATPase (PMCA) and Na+/Ca2+ exchange (NCX) was investigated in single cultured calf pulmonary artery endothelial (CPAE) cells using indo-1 microfluorimetry to measure cytoplasmic Ca2+ concentration ([Ca2+]i). The quantitative analysis of the recovery from an increase of [Ca2+]i elicited by activation of capacitative Ca2+ entry (CCE) served to characterize kinetic parameters of these Ca2+ extrusion systems in the intact cell. In CPAE cells the PMCA is activated in a Ca(2+)- and time-dependent manner. Full activation of the pump occurs only after [Ca2+]i has been elevated for at least 1 min which results in an increase of the affinity of the pump for Ca2+ and an increase in the apparent maximal extrusion rate (Vmax). Application of calmodulin antagonists W-7 and calmidazolium chloride (compound R 24571) revealed that calmodulin is a major regulator of PMCA activity in vivo. Sequential and simultaneous inhibition of PMCA and NCX suggested that both contribute to Ca2+ extrusion in a non-additive fashion. The activity of one system is dynamically adjusted to compensate for changes in the extrusion rate by the alternative transporter. It was concluded that in vascular endothelial cells, the PMCA functions as a calmodulin-regulated, high-affinity Ca2+ removal system. The contribution by the low-affinity NCX to Ca2+ clearance became apparent at [Ca2+]i > approximately 150 nM under conditions of submaximal activation of the PMCA.  相似文献   

6.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

7.
8.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu.  相似文献   

9.
Human platelets were loaded with the fluorescent Na(+)-sensitive dye sodium-binding benzofuran isophtalate (SBFI), and changes in the fluorescence excited at 345 and 385 nm were analyzed after manipulations that evoked predictable changes in the cytosolic Na+ concentration ([Na+]i). Raising [Na+]i by either gramicidin D or monensin specifically increased the fluorescence excited at 345 nm and decreased that excited at 385 nm. Hence, calculation of changes in the 345/385 nm excitation ratio yields an estimate of actual changes in [Na+]i. A transient activation of Na+/H+ exchange evoked by addition of acidified platelets to buffer, pH 7.4, evoked a transient rise in [Na+]i. The re-establishment of basal [Na+]i could be prevented by ouabain, indicating an involvement of the Na+,K(+)-ATPase. Upon stimulation by 0.5 unit/ml of thrombin, [Na+]i immediately increased by 16 +/- 4 mM and this rise continued for at least 60 min after addition of agonist, albeit at a lower rate. This latter sustained rise could not be curtailed by scavenging thrombin by means of hirudin. Addition of ouabain or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced a comparable slow rise in the 345/385 excitation ratio. This may indicate a protein kinase C-mediated inhibition by thrombin of the Na+,K(+)-ATPase. In the absence of extracellular Ca2+ (Ca2+o), the [Na+]i gain was augmented to 38 +/- 9 mM. This additional uptake of Na+ was prevented by (i) Mn2+ ions, (ii) La3+ ions, (iii) the blocker of receptor-mediated Ca2+ entry (1-[beta[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl]-1H-im ida zole hydrochloride), and (iv) by hirudin which reversed receptor occupancy by thrombin. These findings suggest that the additional thrombin-induced [Na+]i gain in the absence of Ca2+o is due to Na+ influx through a Ca2+ entry pathway. The increase in [Na+]i in the presence of Ca2+o results from Na+ influx via Na+/H+ exchange.  相似文献   

10.
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.  相似文献   

11.
The functional expression and distribution of intracellular ATPase (sarco(endo)plasmic reticulum Ca(2+)-ATPase: SERCA) and plasma membrane Ca(2+)-ATPase (PMCA) was analyzed in the developing chick cerebellum. The activity and Ca(2+) uptake increase with development for both ATPases. However, the protein content increases with the stage of development only for SERCA, remaining constant for PMCA. Immunohistochemical assays showed that the ontogenesis of these ATPases goes along with definite stages of cerebellum histogenesis, and is complete at hatching. The SERCA is mainly distributed in Purkinje neurons, whereas the PMCA seems to be expressed initially in climbing fibers, shifting to soma and spiny branchlets of Purkinje cells at late embryonic stages. Granule cells express both ATPases according to their degree of maturity, whereas only PMCA is present in cerebellar glomeruli. These pumps are present in deep nuclei and the choroid plexus, although in this latter tissue their expression declines with development. The spatio-temporal distribution of SERCA and PMCA must be closely related to their association with the development of specific cells and processes of the chick cerebellum.  相似文献   

12.
Fiekers JF 《Life sciences》2001,70(6):681-698
Single cell calcium microfluorimetry was used to examine the regulation of [Ca2+]i homeostasis in a clonal cell line of corticotropes (AtT-20 cells). Single cells, loaded with fura-2/AM, were exposed briefly to elevated potassium chloride (KCI, 40 mM, 5 sec). The time constant of decay of the [Ca2+]i signal was used as an index of [Ca2+]i extrusion and/or sequestration. Substitution of extracellular sodium with lithium, N-methyl-D-glucamine (NMDG), or Tris, increased resting levels of [Ca2+]i and significantly increased the time constant of [Ca2+]i decay by 40% compared to control indicating the participation of Na+-Ca2+-exchange. Prior exposure of single cells to thapsigargin (1 microM) or BuBHQ (10 microM). inhibitors of the SERCA Ca2+-ATPases, and/or the mitochondrial uncoupler FCCP (1 microM) did not significantly change the time constant of [Ca2+]i decay following KCl. Lanthanum ions (La3+), applied during the decay of the KCI-induced increase in [Ca2+]i, significantly increased the time constant of the return of [Ca2+]i to resting levels by 70% compared to control. Brief exposure of cells to sodium orthovanadate, an inhibitor of ATP-dependent pump activity, slowed and longer exposures prevented, the return of [Ca2+]i to resting levels. We conclude that neither intracellular SERCA pumps nor mitochondrial uptake contribute significantly to [Ca2+]i sequestration following a [Ca2+]i load and that the plasma membrane Ca2+-ATPase contributes to a greater extent than the Na+-Ca2+-exchanger to the return of [Ca2+]i to resting levels following a [Ca2+]i load under these experimental conditions.  相似文献   

13.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

14.
By using the fluorescent Ca2+ indicator fura 2, we show that the concentration of free calcium in the cytoplasm of Leishmania donovani promastigotes is maintained at very low levels (73.5 +/- 10-94 +/- 8 nM at a [Ca2+]i range of 0-1 mM). The maintenance of low [Ca2+]i is energy-dependent as it is disrupted by KCN, H+-ATPase inhibitors, and ionophores. KCN, nigericin, and N,N'-dicyclohexylcarbodiimide increase cytosolic free calcium by mobilizing calcium from intracellular pools. Monensin and oligomycin increase [Ca2+]i by allowing influx of calcium from the external medium through the plasma membrane, but they have no effect on intracellular pools. Intracellular traffic of calcium was examined by measuring the transport of 45Ca2+ in digitonin-permeabilized promastigotes. Two transport systems for calcium were identified in these cells. One is respiration-dependent, suggesting a mitochondrial localization. A second system is respiration-independent but requires either endogenous or externally added ATP. The ATP-dependent Ca2+ transport is optimal at pH 7.1, has high affinity for calcium (Km = 92 nM, Vmax = 1 nmol/min/mg of protein), and is sensitive to orthovanadate. These properties suggest the presence of a Ca2+-ATPase similar to that of mammalian endoplasmic reticulum. Taken together, the results indicate that [Ca2+]i in L. donovani promastigotes is regulated at low concentration by mechanisms similar to those found in higher eukaryotic cells.  相似文献   

15.
Pande J  Mallhi KK  Grover AK 《Cell calcium》2005,37(3):245-250
The plasma membrane Ca2+ pump (PMCA) is a Ca2+-Mg2+-ATPase that expels Ca2+ from cells to help them maintain low concentrations of cytosolic Ca2+ ([Ca2+]i). It contains five putative extracellular domains (PEDs). Earlier we had reported that binding to PED2 leads to PMCA inhibition. Mutagenesis of residues in transmembrane domain 6 leads to loss of PMCA activity. PED3 connects transmembrane domains 5 and 6. PED3 is only five amino acid residues long. By screening a phage display library, we obtained a peptide sequence that binds this target. After examining a number of peptides related to this original sequence, we selected one that inhibits the PMCA pump (caloxin 3A1). Caloxin 3A1 inhibits PMCA but not the sarcoplasmic reticulum Ca2+-pump. Caloxin 3A1 did not inhibit formation of the 140 kDa acylphosphate intermediate from ATP or its degradation. Thus, PEDs play a role in the reaction cycle of PMCA even though sites for binding to the substrates Ca2+ and Mg-ATP2-, and the activator calmodulin are all in the cytosolic domains of PMCA. In endothelial cells exposed to low concentration of a Ca2+-ionophore, caloxin 3A1 caused a further increase in [Ca2+]i proving its ability to inhibit PMCA pump extracellularly. Thus, even though PED3 is the shortest PED, it plays key role in the PMCA function.  相似文献   

16.
The present paper concerns with ion homeostatic reactions in view of stimulus-secretion coupling of the beta-cell, including Ca2+ fluxes of the endoplasmatic reticulum (ER). A steady state of cytosolic sodium and potassium ion concentrations ([Na+]c and [K+]c, respectively), and of the membrane potential (Delta c phi) can be attained only, if the flux through the electrogenic Na-K pump (JNaK) is balanced electrically, and if JNaK is rather high (about 25% of total ATP consumption at 10 mM glucose). Metabolically caused changes of cellular pH are unlikely, because, on the one hand, CO2 can rapidly leave the cell through cellular membranes, and because ATP cycling cannot produce nor consume protons. A slight decrease of pHc during cellular activity is caused mainly by an increased Ca-H exchange flux through the plasma membrane Ca2+ pump (J PMCA), which might be overcome, however, by H+ transport into secretory granules. The present simulations show that the conductance of ATP-sensitive K+ channels (K ATP) is highly susceptible to changes of [Mg2+]c. As a physical link between the Ca2+ filling state of the ER and the initiation of a depolarising, Ca2+ release-activated current (I CRAN), a metabolite (inositol 1,4,-diphosphate (IP2)) of the inositol 1,4,5-triphosphate (IP3) cycle is introduced. Sufficient ATP for insulin secretion is made available during glucose activation by [IP2] inhibition of a parallel [ATP]c consuming flux through protein biosynthesis (J Pbs). This leads to fast oscillations with a triphasic patterns of [Ca2+]c oscillations. Slow oscillations are initiated by including a Ca2+ leak current through highly uncoupled SERCA3 pumps. Both types of oscillations may superimpose yielding compound bursting and mixed oscillations of [Ca2+]c.  相似文献   

17.
Roux E  Marhl M 《Biophysical journal》2004,86(4):2583-2595
The aim of this study was to use both a theoretical and experimental approach to determine the influence of the sarco-endoplasmic Ca2+-ATPase (SERCA) activity and mitochondria Ca2+ uptake on Ca2+ homeostasis in airway myocytes. Experimental studies were performed on myocytes freshly isolated from rat trachea. [Ca2+]i was measured by microspectrofluorimetry using indo-1. Stimulation by caffeine for 30 s induced a concentration-graded response characterized by a transient peak followed by a progressive decay to a plateau phase. The decay phase was accelerated for 1-s stimulation, indicating ryanodine receptor closure. In Na2+-Ca2+-free medium containing 0.5 mM La3+, the [Ca2+]i response pattern was not modified, indicating no involvement of transplasmalemmal Ca2+ fluxes. The mathematical model describing the mechanism of Ca2+ handling upon RyR stimulation predicts that after Ca2+ release from the sarcoplasmic reticulum, the Ca2+ is first sequestrated by cytosolic proteins and mitochondria, and pumped back into the sarcoplasmic reticulum after a time delay. Experimentally, we showed that the [Ca2+]i decay after Ca2+ increase was not altered by the SERCA inhibitor cyclopiazonic acid, but was slightly but significantly modified by the mitochondria uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. The experimental and theoretical results indicate that, although Ca2+ pumping back by SERCA is active, it is not primarily involved in [Ca2+]i decrease that is due, in part, to mitochondrial Ca2+ uptake.  相似文献   

18.
Cell migration plays a central role in many physiological and pathophysiological processes. On a cellular level it is based on a highly coordinated restructuring of the cytoskeleton, a continuous cycle of adhesion and de-adhesion as well as on the activity of ion channels and transporters. The cytoplasmic Ca2+ ([Ca2+]i) concentration is an important coordinator of these intracellular processes. Thus, [Ca2+]i must be tightly controlled in migrating cells. This is among other things achieved by the activity of Ca2+ permeable channels, the plasma membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX) in the plasma membrane. Here, we wanted to determine the functional role of these transport proteins in cell migration. We therefore quantified the acute effect of inhibitors of these transport proteins (Gd3+, vanadate, KB-R7943) on migration, [Ca2+]i, and intracellular pH (pHi) of MDCK-F cells. Migration was monitored with computer-assisted time-lapse video microscopy. [Ca2+]i and pHi were measured with the fluorescent indicators fura-2 and BCECF. NCX expression in MDCK-F cells was verified with ion substitution experiments, and expression of PMCA was tested with RT-PCR. All blockers lead to a rapid impairment of cell migration. However, the most prominent effect is elicited by NCX-inhibition with KB-R7943. NCX-blockade leads to an almost complete inhibition of migration which is accompanied by a dose-dependent increase of [Ca2+]i and an intracellular alkalinisation. We show that inhibition of NCX and PMCA strongly affects lamellipodial dynamics of migrating MDCK-F cells. Taken together, our results show that PMCA and in particular NCX are of critical importance for cell migration.  相似文献   

19.
Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+ content and its influence on intracellular Ca2+ transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+ transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 +/- 13.9% increase in sarcomere fraction shortening and a 43.6 +/- 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+ concentration (E[Ca2+]i) transients (n = 14, P < 0.05). But SR Ca2+ content measured by caffeine-induced [Ca2+]i (C[Ca2+]i) transient was decreased 8.41 +/- 0.92% in response to apelin (n = 14, P < 0.05). Na+/Ca2+ exchanger (NCX) function was increased since half-decay time of C[Ca2+]i was decreased 16.22 +/- 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+ indicator and rapid cooling as another way to measure SR Ca2+ content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]i is at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+ content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.  相似文献   

20.
SERCA1a, the fast-twitch skeletal muscle isoform of sarco(endo)plasmic reticulum Ca(2+)-ATPase, was expressed in yeast using the promoter of the plasma membrane H(+)-ATPase. In the yeast Saccharomyces cerevisiae, the Golgi PMR1 Ca(2+)-ATPase and the vacuole PMC1 Ca(2+)-ATPase function together in Ca2+ sequestration and Ca2+ tolerance. SERCA1a expression restored growth of pmc1 mutants in media containing high Ca2+ concentrations, consistent with increased Ca2+ uptake in an internal compartment. SERCA1a expression also prevented synthetic lethality of pmr1 pmc1 double mutants on standard media. Electron microscopy and subcellular fractionation analysis showed that SERCA1a was localized in intracellular membranes derived from the endoplasmic reticulum. Finally, we found that SERCA1a ATPase activity expressed in yeast was regulated by calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase. This result indicates that calcineurin contributes to calcium homeostasis by modulating the ATPase activity of Ca2+ pumps localized in intra-cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号