首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the interaction of the surface of biomembranes with solvents systematically, we have studied the structure and phase behavior of multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) in dimethylformamide (DMF)-water mixture by X-ray diffraction and differential scanning calorimetry. The solubility of phosphorylcholine, which is the same molecular structure as the head-group of phosphatidylcholine (PC), decreased with an increase in DMF concentration. This result indicates that DMF is a poor solvent for the hydrophilic segments of the surface of the PC membrane, and interaction free energy of the hydrophilic segments of the membrane surface with solvents increases with an increase in DMF concentration. X-ray diffraction data indicated that DPPC-MLVs were in the bilayer gel phase from 0 to 80% (v/v) DMF, and that the spacing (lamellar repeat period) and intermembrane distance of DPPC-MLV decreased with an increase in DMF concentration. Main transition temperature and pre-transition temperature of DPPC-MLV increased with an increase in DMF concentration, and above 50% (v/v) DMF there was no pre-transition. In the interaction of POPC-MLV with DMF, X-ray diffraction data indicated that POPC-MLVs were in L(alpha) phase (liquid-crystalline phase) from 0 to 80% (v/v) DMF, and that the spacing and intermembrane distance of POPC-MLV decreased with an increase in DMF concentration. These results are discussed by the change of the interaction free energy between the hydrophilic segments of the membrane surface and solvents. As DMF concentration increases, this interaction free energy may increase, resulting in the decrease of the intermembrane distance of PC-MLVs.  相似文献   

2.
The mobility of 5-doxyl stearic acid spin label (5-SASL) in the gel phase of dipalmitoylphosphatidylcholine membranes between the main transition and subtransition temperatures was studied as a function of cholesterol content. Very small amounts of cholesterol (0.01-1 mol%) cause a dramatic increase in the mobility of 5-SASL. Temperature-drop experiments from 38 degrees C to 28 degrees C were made across the pretransition temperature and the rate of approach to equilibrium was measured. Cholesterol at low concentrations also affects this rate. The membrane reached equilibrium after 10 h in the absence of cholesterol, 3 h at 0.01 mol% cholesterol, and less than 10 min at 0.03 mol% cholesterol.  相似文献   

3.
The interaction between α-tocopherol and phosphatidylcholine was studied in liposomes by differential scanning calorimetry and osmotic water transport studies. Addition of α-tocopherol to phosphatidylcholine resulted in a reduction in enthalpy at the transition temperature, a rise in osmotic water permeability of the liposomes below the phase transition temperature and disappearance of the discontinuity of osmotic water transport at the phase transition. Also the temperature dependence of osmotic water transport was reduced below the transition temperature. A comparison between cholesterol and α-tocopherol in regulation of permeability was made and the physiological relevance of tocopherol in regulation of membrane permeability is discussed.  相似文献   

4.
A number of phenylamide herbicides are observed to uncouple electron transport in isolated chloroplasts and mitochondria and alter the H+ permeability of artificial liposomes. Several of these phenylamides were incorporated into phosphatidylcholine multilamellar and small unilamellar vesicles to measure their effects on the physical properties of membranes. X-ray diffraction analysis of the multilamellar vesicles revealed that the herbicides partitioned into the hydrocarbon chain region of the bilayer, but caused only minimal perturbations on hydrocarbon chain packing. 31P-NMR spectroscopy of these multilamellar vesicles showed both a broadening and lowering of the phase transition temperature of the bilayer lipids upon addition of the herbicides. 13C-NMR spectroscopy of small, unilamellar phosphatidylcholine vesicles was performed to measure the effects of the phenylamides on the chemical shifts and the spin-lattice relaxation times of the individual phosphatidylcholine carbon atoms. None of the added compounds had any measurable effect on the 13C-NMR chemical shifts of the phosphatidylcholine. However, the herbicides significantly modified spin-lattice relaxation times of certain of the lipid carbon atoms. These results generally indicate that the herbicides orient in the lipid bilayers such that the hydrocarbon chains of the phenylamides associate with the hydrocarbon chains of the lipid, whereas the phenyl moiety resides in the polar region of the bilayer.  相似文献   

5.
Glycosaminoglycan side chains of membrane proteoglycans have been claimed to be located at the outermost layer of the glycocalyx surrounding the cell. In this study measurements by surface plasmon resonance and solid-phase assay have shown that both chondroitin sulfate and keratan sulfate but not heparin associate with phosphatidylcholine under physiological conditions. Spectrophotometric measurements also showed that chondroitin sulfate restricts the lateral diffusion of phosphatidylcholine in liposomes. These findings indicate that chondroitin sulfate and/or keratan sulfate chains of membrane proteoglycans crouch on the surface of the membrane while heparan sulfate chains stretch outward from the membrane surface as postulated traditionally.  相似文献   

6.
Summary Polyethylene glycol-modified enzymes dissolved and had high enzymic activity in organic solvents. A trace amount of water was found to be necessary for the activity. It was reasoned that the amphipathic polymer covalently attached to enzymes kept water molecules around them. This was supported by findings that : (1) high enzymic activity was found in water- immiscible solvents, whereas activity was never observed in water-miscible solvents; (2) enzymic activity was inhibited by increasing the concentration of dimethyl sulfoxide in benzene; (3) activity of lipase was inhibited by a water-miscible alcohol substrate, but was steadily elevated by increasing the concentration of a water-immiscible alcohol substrate; (4) water was not absorbed from benzene solution containing a modified enzyme by molecular sieves, while it was easily absorbed in the presence of a water-miscible organic solvent, dimethyl sulfoxide.  相似文献   

7.
Effects of benzyl alcohol (BA) on the bilayer thickness d1 and the fluidity of egg phosphatidylcholine (PC) lamellar phase with various water contents have been studied by X-ray diffraction and the proton spin-lattice relaxation rate. At lower water contents; BA causes d1 to decrease and the rate of molecular motions to increase. By contrast, with increasing BA at excess water, d1 remains nearly unchanged, though the rate of motions increases. Hydration experiment for egg phosphatidylcholine lamellae with BA at a 1:1 molar ratio shows that in the range from 15% to 30% water, d1 decreases to the value of the fully hydrated sample without BA and is nearly constant above 30% water. The value at full hydration is suggested to be a lower limit of the bilayer thickness, the chain is in the unperturbed state. It is in an extended structure at lower water contents. This leads to the difference in the effect of BA on the bilayer thickness at different water contents.  相似文献   

8.
Self-association of amyloid β-peptide (Aβ) is considered to be an initial step in the development of Alzheimer’s disease and is known to be promoted by negatively charged lipid membranes. We have examined the possibility of non-electrostatic Aβ-membrane interaction by using neutral phosphatidylcholine lipids. Fluorescence and circular dichroism spectra have clearly shown that Aβ binds to the phosphatidylcholine membrane in the lamellar gel phase but not in the ripple gel or liquid crystalline phase, indicating the importance of the tight lipid packing characteristic of the lamellar gel phase. The Aβ-membrane binding occurs at both low and high salt concentrations, ensuring the non-electrostatic nature of the interaction. The membrane-bound Aβ molecule takes a monomeric α-helical or self-associated β-sheet structure depending on the temperature, peptide/lipid ratio, and salt concentration. The flat surface of tightly packed phosphatidylcholine membranes appears to serve as a platform for non-electrostatic binding and self-association of Aβ.  相似文献   

9.
A method is reported for the synthesis of pyrene-labeled analogues of phosphatidylinositol 4-phosphate (Pyr-PIP) and phosphatidylinositol 4,5-biphosphate (Pyr-PIP2) from sn-2-(pyrenyl-decanoyl)phosphatidylinositol (Pyr-PI) using partially purified PI and PIP kinase preparations. Phosphorylation of Pyr-PI and Pyr-PIP was extensive (more than 50%) provided that the ATP concentration was high and that stabilizing agents such as sucrose and polyethylene glycol were present in the incubation medium. Pyr-PIP and Pyr-PIP2 were isolated by chromatography on immobilized neomycin. The identity of the products was established by thin-layer chromatography, UV-absorption spectroscopy, and spectrofluorometry. The pyrene excimer/monomer fluorescence technique revealed that, in contrast to Pyr-PI, Pyr-PIP and Pyr-PIP2 formed clusters in organic solvents. By use of the same technique for model membranes, it was shown that in phosphatidylcholine bilayers the collision frequency of the three fluorescent phosphoinositides decreased in the order PI greater than PIP greater than PIP2. Addition of Ca2+ at concentrations above 0.1 mM increased the collision frequency of Pyr-PIP2 and, to a much lesser extent, Pyr-PIP; Ca2+ had no effect on Pyr-PI.  相似文献   

10.
Knoche M  Peschel S  Hinz M  Bukovac MJ 《Planta》2000,212(1):127-135
Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± 1 °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10−4 m s−1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8–2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ± 0.10 × 10−4 m s−1) to ventral suture (1.32 ± 0.07 × 10−4 m s−1) and to stylar end (2.53 ± 0.17 × 10−4 m s−1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10−4 m s−1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10–39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol−1 for flux and vapour-concentration-based conductance, respectively. Received: 23 March 2000 / Accepted: 28 July 2000  相似文献   

11.
The influence of membrane surface charge on the conformation of the choline head group of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was investigated in the gel and liquid-crystalline states by using 2H NMR spectroscopy of specifically choline-deuterated DMPC. The surface charge was made progressively more negative through admixture of various proportions of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). All membrane compositions showed nearly identical gel- to liquid-crystalline-phase transitions centered about 24 degrees C. The gel-state 2H NMR spectra from all three choline head-group deutero-labeling positions (alpha, beta, and gamma) decreased in intensity and broadened relative to the liquid-crystalline-state spectra. These effects were not so severe that they masked the overriding influence of surface charge on the choline head-group conformation as reflected in the 2H NMR spectra. Thus, in both the liquid-crystalline and gel states, the presence of negative surface charge caused the quadrupole splitting from DMPC-alpha-d2 to increase while causing that from DMPC-beta-d2 and DMPC-gamma-d9 to decrease. These effects were progressive with increasing density of negative surface charge. Correlation plots of the quadrupole splittings obtained, under otherwise identical conditions, from different deutero-labeling positions were linear over most of the range of surface charge densities, in both the liquid-crystalline and gel states, for all three correlations (alpha-beta, beta-gamma, and alpha-gamma). At extreme surface charge densities, the alpha-beta and alpha-gamma correlations showed biphasic behavior in that, at high surface charge densities, the change in the quadrupole splittings from DMPC-alpha-d2 became less pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon.  相似文献   

13.
Y Wu  K He  S J Ludtke    H W Huang 《Biophysical journal》1995,68(6):2361-2369
A variety of amphiphilic helical peptides have been shown to exhibit a transition from adsorbing parallel to a membrane surface at low concentrations to inserting perpendicularly into the membrane at high concentrations. Furthermore, this transition has been correlated to the peptides' cytolytic activities. X-ray lamellar diffraction of diphytanoyl phosphatidylcholine-alamethicin mixtures revealed the changes of the bilayer structure with alamethicin concentration. In particular, the bilayer thickness decreases with increasing peptide concentration in proportion to the peptide-lipid molar ratio from as low as 1:150 to 1:47; the latter is near the threshold of the critical concentration for insertion. From the decreases of the bilayer thickness, one can calculate the cross sectional expansions of the lipid chains. For all of the peptide concentrations studied, the area expansion of the chain region for each adsorbed peptide is a constant 280 +/- 20 A2, which is approximately the cross sectional area of an adsorbed alamethicin. This implies that the peptide is adsorbed at the interface of the hydrocarbon region, separating the lipid headgroups laterally. Interestingly, the chain disorder caused by a peptide adsorption tends to spread over a large area, as much as 100 A in diameter. The theoretical basis of the long range nature of bilayer deformation is discussed.  相似文献   

14.
The ESR spectra from different positional isomers of sphingomyelin and phosphatidylcholine spin-labeled in their acyl chain have been studied in sphingomyelin(cerebroside)-phosphatidylcholine mixed membranes that contain cholesterol. The aim was to investigate mechanisms by which cholesterol could stabilize possible domain formation in sphingolipid-glycerolipid membranes. The outer hyperfine splittings in the ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled on the 5 C atom of the acyl chain were consistent with mixing of the components, but the perturbations on adding cholesterol were greater in the membranes containing sphingomyelin than in those containing phosphatidylcholine. Infrared spectra of the amide I band of egg sphingomyelin were shifted and broadened in the presence of cholesterol to a greater extent than the carbonyl band of phosphatidylcholine, which was affected very little by cholesterol. Two-component ESR spectra were observed from lipids spin-labeled on the 14 C atom of the acyl chain in cholesterol-containing membranes composed of sphingolipids, with or without glycerolipids (sphingomyelin/cerebroside and sphingomyelin/cerebroside/phosphatidylcholine mixtures). These results indicate the existence of gel-phase domains in otherwise liquid-ordered membranes that contain cholesterol. In the gel phase of egg sphingomyelin, the outer hyperfine splittings of sphingomyelin spin-labeled on the 14-C atom of the acyl chain are smaller than those for the corresponding spin-labeled phosphatidylcholine. In the presence of cholesterol, this situation is reversed; the outer splitting of 14-C spin-labeled sphingomyelin is then greater than that of 14-C spin-labeled phosphatidylcholine. This result provides some support for the suggestion that transbilayer interdigitation induced by cholesterol stabilizes the coexistence of gel-phase and "liquid-ordered" domains in membranes containing sphingolipids.  相似文献   

15.
In plant cells, phosphatidylcholine (PC) is a major glycerolipid of most membranes but practically lacking from the plastid internal membranes. In chloroplasts, PC is absent from the thylakoids and the inner envelope membrane. It is however the main component of the outer envelope membrane, where it exclusively distributes in the outer monolayer. This unique distribution is likely related with operational compartmentalization of plant lipid metabolism. In this review, we summarize the different mechanisms involved in homeostasis of PC in plant cells. The specific origin of chloroplast PC is examined and the involvement of the P4-ATPase family of phospholipid flippases (ALA) is considered with a special attention to the recently reported effect of the endoplasmic reticulum-localized ALA10 on modification of chloroplast PC desaturation. The different possible roles of chloroplast PC are then discussed and analyzed in consideration of plant physiology.  相似文献   

16.
In this work, binary mixtures of phospholipid/ergosterol (erg) were studied using three fluorescent membrane probes. The phospholipid was either saturated (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) or monounsaturated (1-palmitoyl-2-dioleoyl-sn-glycero-3-phosphocholine, POPC) phosphatidylcholine, to evaluate the fluorescence properties of the probes in gel, liquid ordered (l(o)) and liquid disordered (l(d)) phases. The probes have been used previously to study cholesterol-enriched domains, but their photophysical properties in erg-enriched membranes have not been characterized. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-DPPE) presents modest blue-shifts upon erg addition, and the changes in the fluorescence lifetime are mainly due to differences in the efficiency of its fluorescence dynamic self-quenching. However, the steady-state fluorescence anisotropy of NBD-DPPE presents well-defined values in each lipid phase. N-(lissamine rhodamine B sulfonyl)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Rhod-DOPE) presents a close to random distribution in erg-rich membranes. There are no appreciable spectral shifts and the steady-state fluorescence anisotropy presents complex behavior, as a result of different photophysical processes. The probe is mostly useful to label l(d) domains in yeast membranes. 4-(2-(6-(Dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium (di-4-ANEPPS) is an electrochromic dye with excitation spectra largely insensitive to the presence of erg, but presenting a strong blue-shift of its emission with increasing concentrations of this sterol. Its partition coefficient is favorable to l(o) domains in POPC/erg mixtures. Although the fluorescence properties of di-4-ANEPPS are less sensitive to erg than to chol, in both cases the fluorescence lifetime responds monotonically to sterol mole fraction, becoming significantly longer in the presence of sterol as compared to pure POPC or DPPC bilayers. The probe displays a unique sensitivity to sterol-lipid interaction due to the influence of hydration and H-bonding patterns at the membrane/water interface on its fluorescence properties. This makes di-4-ANEPPS (and possibly similar probes) potentially useful in the study of erg-enriched domains in more complex lipid mixtures and in the membranes of living yeast cells.  相似文献   

17.
The work presents a fast quantitative approach for estimating the orientations of hydrophilic and hydrophobic regions in the helical wheels of membrane-spanning alpha-helices of transmembrane proteins. The common hydropathy analysis provides an estimate of the integral hydrophobicity in a moving window which scans an amino acid sequence. The new parameter, orientation hydrophobicity, is based on the estimate of hydrophobicity of the angular segment that scans the helical wheel of a given amino acid sequence. The corresponding procedure involves the treatment of transmembrane helices as cylinders with equal surface elements for each amino acid residue. The orientation hydrophobicity, P(phi), phi = 0-360 degrees, of a helical cylinder is given as a sum of hydrophobicities of individual amino acids which are taken as the S-shaped functions of the angle between the centre of amino acid surface element and the centre of the segment. Non-zero contribution to P(phi) comes only from the amino acids belonging to the angular segment for a given angle phi. The size of the angular segment is related to the size of the channel pore. The amplitudes of amino acid S-functions are calibrated in the way that their maximum values (reached when the amino acid is completely exposed into the pore) are equal to the corresponding hydropathy index in the selected scale (here taken as Goldman-Engelman-Steitz hydropathy scale). The given procedure is applied in the studies of three ionic channels with well characterized three-dimensional structures where the channel pore is formed by a bundle of alpha-helices: cholera toxin B, nicotinic acetylcholine homopentameric alpha7 receptor, and phospholamban. The estimated maximum of hydrophilic properties at the helical wheels are in a good agreement with the spatial orientations of alpha-helices in the corresponding channel pores.  相似文献   

18.
The dynamics of lipid hydrocarbon chains in phosphatidylcholine (dimyristoyl- or dipalmitoyl-) and cholesterol/dimyristoylphosphatidylcholine membranes were investigated by nanosecond time-resolved fluorescence depolarization measurements on a lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene embedded in the membranes. In the pure lipid membranes, both the range (amplitude) and the rate of the wobbling motion of the probe increased sigmoidally with temperature reflecting the thermotropic phase transition of the lipid. The rise in the rate slightly preceded the increase in the range, suggesting that the fluctuation of lipid chains is activated to a high level before the ordered array of chains melt into the liquid-crystalline phase. Above the transition temperature, incorporation of cholesterol resulted in a dramatic decrease in the range of wobbling motion while the rate remained high. Below the transition, on the other hand, cholesterol had little effect on the range, whereas the rate was greatly increased. These effects of cholesterol are remarkably similar to the effects of cytochrome oxidase on lipid chain dynamics (Kinosita, K., Jr., Kawato, S., Ikegami, A., Yoshida, S. and Orii, Y. (1981) Biochim. Biophys. Acta 647, 7–17).  相似文献   

19.
X-ray diffraction studies have been made on the effects of cations upon the dipamitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 Å and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. the lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150–200 Å comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys lamellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phaseThe high-angle reflections indicate that molecular arrangements on phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

20.
The interaction of lipids, spin-labeled at different positions in the sn-2 chain, with cytochrome c oxidase reconstituted in gel-phase membranes of dimyristoylphosphatidylglycerol has been studied by electron paramagnetic resonance (EPR) spectroscopy. Nonlinear EPR methods, both saturation transfer EPR and progressive saturation EPR, were used. Interaction with the protein largely removes the flexibility gradient of the lipid chains in gel-phase membranes. The rotational mobility of the chain segments is reduced, relative to that for gel-phase lipids, by the intramembranous interaction with cytochrome c oxidase. This holds for all positions of chain labeling, but the relative effect is greater for chain segments closer to the terminal methyl ends. Modification of the paramagnetic metal-ion centers in the protein by binding azide has a pronounced effect on the spin-lattice relaxation of the lipid spin labels. This demonstrates that the centers modified are sufficiently close to the first-shell lipids to give appreciable dipolar interactions and that their vertical location in the membrane is closer to the 5-position than to the 14-position of the lipid chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号