首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The comparative tumorigenicity in rats and nude mice of cell lines derived from FR3T3 and transformed by either c-jun, ras, SV40 lt, or bovine papilloma virus type 1 (BPV1) oncogenes was investigated. c-Jun-transformed cells were as tumorigenic and metastatic as Ras-transformed cells. Latencies were short, and numerous pulmonary metastases were observed in all injected animals. In contrast, tumors induced by s.c. injection of SV40-transformed cells developed slower, and none of the animals who received injections i.v. presented with metastases. BPV1-transformed cells had an intermediate tumorigenic and metastatic activity. Microvessels present in the different tumors were revealed by immunostaining with Griffonia (Bandeiraea) Simplicifolia lectin 1. Tumors obtained with c-Jun-transformed cells exhibited more neovascularization than those induced by the other oncogenes. By comparison to FR3T3 cells or SV40- or BPV1-transformed cells, c-Jun-transformed fibroblasts repress the antiangiogenic thrombospondin-1 and SPARC genes, whereas we found that they express higher levels of gene expression of the angiogenic vascular endothelial growth factor. Finally, as compared with cells before passage in animals, thrombospondin-1, SPARC, and VEGF gene expression was also deregulated in cell lines isolated from primary tumors induced by BPV1-transformants. Our results indicate that the high transforming potential of c-Jun, evidenced as soon as transformation is established in vitro, correlates with deregulation of gene expression of both angiogenic and antiangiogenic factors leading to rapid neovascularization of tumors.  相似文献   

2.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to exhibit potent anticancer effects in vitro and in vivo. One of the mechanisms by which NSAIDs suppress tumorigenesis is inhibition of angiogenesis and metastasis. In this study, we used a microarray system to study the change of expression profile of metastasis-related genes regulated by NS398, a NSAID and a cyclooxygenase-2 (COX-2) inhibitor. We found that several negative regulators of cell invasion, including secreted protein acidic and rich in cysteine (SPARC), thrombospondin 1 (TSP-1), thrombospondin 3 (TSP-3), and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) are upregulated by NS398. In addition, we demonstrated that upregulation of SPARC expression by NS398 in human lung cancer cells is mediated by promoter demethylation and associated with a decrease in DNA methyltransferase (DNMT) expression. This is the first report to show that NS398 can inhibit the expression of DNMT1 and 3b. Functional assay indicated that SPARC is a critical mediator for NS398 to inhibit cell invasion. Our results provide new insights for the understanding of the anticancer actions of NSAIDs.  相似文献   

3.
4.
5.
The amyloid precursor protein (APP) has been suggested to regulate gene expression. GeneChip analysis and in vitro kinase assays revealed potent APP-dependent repression of c-Jun, its target gene SPARC and reduced basal c-Jun N-terminal kinase (JNK) activity in PC12 cells overexpressing APP. UV-induced activation of the JNK signalling pathway and subsequent apoptosis were likewise reduced by APP and this effect could be mimicked by the indirect JNK inhibitor CEP-11004. Treatment with a gamma-secretase inhibitor did not affect APP-mediated downmodulation of the JNK signalling pathway, suggesting that the effects might be mediated via alpha-secretase processing of APP. In support of these data, overexpression of the Swedish mutant of APP did not inhibit SPARC expression, UV-induced JNK activation and cell death. Our data suggest an important physiological role of APP and alpha-secretase activity in the control of JNK/c-Jun signalling, target gene expression and cell death activation in response to cytotoxic stress.  相似文献   

6.
7.
SPARC and tumor growth: Where the seed meets the soil?   总被引:21,自引:0,他引:21  
Matricellular proteins mediate interactions between cells and their extracellular environment. This functional protein family includes several structurally unrelated members, such as SPARC, thrombospondin 1, tenascin C, and osteopontin, as well as some homologs of these proteins, such as thrombospondin 2 and tensascin X. SPARC, a prototypic matricellular protein, and its homolog hevin, have deadhesive effects on cultured cells and have been characterized as antiproliferative factors in some cellular contexts. Both proteins are produced at high levels in many types of cancers, especially by cells associated with tumor stroma and vasculature. In this Prospect article we summarize evidence for SPARC and hevin in the regulation of tumor cell growth, differentiation, and metastasis, and we propose that matricellular proteins such as these perform critical functions in desmoplastic responses of tumors that culminate in their dissemination and eventual colonization of other sites.  相似文献   

8.
9.
10.
We report the primary structure of three novel, putative zinc metalloproteases designated ADAM-TS5, ADAM-TS6, and ADAM-TS7. All have a similar domain organization, comprising a preproregion, a reprolysin-type catalytic domain, a disintegrin-like domain, a thrombospondin type-1 (TS) module, a cysteine-rich domain, a spacer domain without cysteine residues, and a COOH-terminal TS module. These genes are differentially regulated during mouse embryogenesis and in adult tissues, with Adamts5 highly expressed in the peri-implantation period in embryo and trophoblast. These proteins are similar to four other cognate gene products, defining a distinct family of human reprolysin-like metalloproteases, the ADAM-TS family. The other members of the family are ADAM-TS1, an inflammation-induced gene, the procollagen I/II amino-propeptide processing enzyme (PCINP, ADAM-TS2), and proteins predicted by the KIAA0366 and KIAA0688 genes (ADAM-TS3 and ADAM-TS4). Individual ADAM-TS members differ in the number of COOH-terminal TS modules, and some have unique COOH-terminal domains. The ADAM-TS genes are dispersed in human and mouse genomes.  相似文献   

11.
12.
Activated Ras but not Raf can transform RIE-1 and other epithelial cells, indicating the critical importance of Raf-independent effector function in Ras transformation of epithelial cells. To elucidate the nature of these Raf-independent activities, we utilized representational difference analysis to identify genes aberrantly expressed by Ras through Raf-independent mechanisms in RIE-1 cells. We identified a total of 22 genes, both known and novel, whose expression was either activated or abolished by Ras but not Raf. The genes up-regulated encode proteins involved in protein or DNA synthesis, regulation of protease activity, or ligand binding, whereas those genes down-regulated encode actin cytoskeletal-, extracellular matrix-, and gap junction-associated proteins, and transmembrane receptor- or cytokine-like proteins. These results suggest that a key function of Raf-independent signaling involves deregulation of gene expression. We further characterized transgelin as a gene whose expression was abolished by Ras. Transgelin was identified previously as a protein whose expression was lost in virally transformed cell lines. We show that this loss is regulated at the level of gene expression and that both Raf-dependent and Raf-independent pathways are required to cause Ras down-regulation of transgelin in RIE-1 cells, whereas Raf alone is sufficient to cause its loss in NIH 3T3 fibroblasts. We also found that Ras-dependent and Ras-independent mechanisms can cause the down-regulation of transgelin in human breast and colon carcinoma cells lines and patient-derived tumor samples. We conclude that loss of transgelin gene expression may be an important early event in tumor progression and a diagnostic marker for breast and colon cancer development.  相似文献   

13.
14.
15.
Studies were undertaken to determine the effect of the Ras suppressor Rsu-1 on Ras signal transduction pathways in two different cell backgrounds. An expression vector containing the mouse rsu-1 cDNA under the control of a mouse mammary tumor virus promoter was introduced into NIH 3T3 cells and the pheochromocytoma cell line PC12. Cell lines developed in the NIH 3T3 background expressed p33rsu-1 at approximately twice the normal endogenous level. However, PC12 cell clones which expressed p33rsu-1 at an increased level in a regulatable fashion in response to dexamethasone were isolated. Analysis of proteins involved in regulation of Ras and responsive to Ras signal transduction revealed similar changes in the two cell backgrounds in the presence of elevated p33rsu-1. There was an increase in the level of SOS, the guanine nucleotide exchange factor, and an increase in the percentage of GTP-bound Ras. In addition, there was an increase in the amount of p120 Ras-specific GTPase-activating protein (GAP) and GAP-associated p190. However, a decrease in Ras GTPase-activating activity was detected in lysates of the Rsu-1 transfectants, and immunoprecipitated p120 GAP from the Rsu-1 transfectants showed less Ras GTPase-activating activity than GAP from control cells. Activation of Erk-2 kinase by growth factor and tetradecanyol phorbol acetate was greater in the Rsu-1 transfectants than in control cells. However, c-Jun amino-terminal kinase activity (Jun kinase) was not activatable by epidermal growth factor in Rsu-1 PC12 cell transfectants, in contrast to the PC12 vector control cell line. Transient expression of p33rsu-1 in Cos1 cells following cotransfection with either hemagglutinin-tagged Jun kinase or hemagglutinin-tagged Erk-2 revealed that Rsu-1 expression inhibited constitutive Jun kinase activity while enhancing Erk-2 activity. Detection of in vitro binding of Rsu-1 to Raf-1 suggested that in Rsu-1 transfectants, increased activation of the Raf-1 pathway occurred at the expense of activation of signal transduction leading to Jun kinase. These results indicate that inhibition of Jun kinase activation was sufficient to inhibit Ras transformation even in the presence of activated Erk-2.  相似文献   

16.
17.
18.
Mutationally activated Ras is involved in tumor progression and likely also in drug resistance. Using survival, viability and apoptosis assays, we have here compared the cisplatin sensitivities of FR3T3 rat fibroblasts and a 12V-H-ras transformed subline (Ras2:3). Around 24 h after cisplatin treatment Ras2:3 cells showed higher apoptosis levels and lower viability than FR3T3. This increased sensitivity correlated with weaker cisplatin-induced activation of Jun N-terminal kinase (JNK). In contrast to apoptosis assays, colony formation assays showed that Ras2:3 were more resistant to cisplatin than were FR3T3. This was partly due to the increased cisplatin sensitivity of FR3T3 seeded at low densities, as required in colony formation assays. In addition, Ras2:3 cisplatin survivors had a higher relative proliferative capacity. Cell cycle analyses showed that FR3T3 cells initially responded with a dose-dependent G2 arrest, while Ras2:3 accumulated in S-phase. Experiments with an anti-apoptotic mutant of MEKK1 suggested that the apoptotic response of Ras2:3 cells is not specific to the S-phase fraction. In summary, the cisplatin response of ras-transformed fibroblasts is distinct from that of parental cells, in that they show increased apoptosis, a different cell cycle response and increased post-treatment proliferative capacity. The results illustrate the need to carefully consider methods and protocols for in vitro studies on chemotherapy sensitivity.  相似文献   

19.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

20.
The c-Jun N-terminal kinases (JNKs) are encoded by three genes that yield 10 isoforms through alternative mRNA splicing. The roles of each JNK isoform in the many putative biological responses where the JNK pathway is activated are still unclear. To examine the cellular responses mediated by different JNK isoforms, gain-of-function JNK1 polypeptides were generated by fusing the upstream mitogen-activated protein kinase kinase, MKK7, with p46JNK1alpha or p46JNK1beta. The MKK7-JNK fusion proteins, which exhibited constitutive activity in 293T cells, were stably expressed in Swiss 3T3 fibroblasts using retrovirus-mediated gene transfer. Swiss 3T3 cells expressing either of the MKK7-JNK polypeptides were equally sensitized to induction of cell death following serum withdrawal. To search for other cellular responses that may be selectively regulated by the JNK1 isoforms, the gene expression profiles of Swiss 3T3 cells expressing MKK7-JNK1alpha or MKK7-JNK1beta were compared with empty vector-transfected control cells. Affymetrix Genechips identified 46 genes for which expression was increased in MKK7-JNK-expressing cells relative to vector control cells. Twenty genes including those for c-Jun, MKP-7, interluekin-1 receptor family member ST2L/ST2, and c-Jun-binding protein were induced similarly by MKK7-JNK1alpha and MKK7-JNK1beta proteins, whereas 13 genes were selectively increased by MKK7-JNK1alpha and 13 genes were selectively increased by MKK7-JNK1beta. The set of genes selectively induced by MKK7-JNK1beta included a number of known interferon-stimulated genes (ISG12, ISG15, IGTP, and GTPI). Consistent with these gene expression changes, Swiss 3T3 cells expressing MKK7-JNK1beta exhibited increased resistance to vesicular stomatitis virus-induced cell death. These findings reveal evidence for JNK isoform-selective gene regulation and support a role for distinct JNK isoforms in specific cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号