首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

2.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

3.
The Ca(2+)-calmodulin (CaM)-dependent activation of myosin light chain kinase is inhibited by ruthenium red competitively with respect to Ca2+, with a Ki value of 8.6 microM. The binding of Ca2+ to CaM is inhibited by micromolar concentrations of ruthenium red. In the absence of Ca2+, CaM has two binding sites for ruthenium red with the dissociation constants of 0.36 and 8.7 microM, respectively. Ca2+ antagonizes the binding of ruthenium red to the low-affinity site on CaM. Binding of ruthenium red to the high-affinity site is not affected by Ca2+. The low- and high-affinity sites for ruthenium red are shown to be located in the NH2-terminal half and the COOH-terminal half of CaM, respectively. Lower concentrations of ruthenium red are needed for enzyme inactivation than for the dissociation of enzyme-CaM-Sepharose complex, suggesting these events have different Ca2+ requirements. Moreover, ruthenium red inhibits Ca(2+)-induced contraction of depolarized vascular smooth muscle in a competitive manner with respect to Ca2+. These results suggest that ruthenium red may be a new type of CaM antagonist that inhibits the binding of Ca2+ to CaM and thereby inhibits Ca(2+)-CaM-dependent enzymes and smooth muscle contraction competitively with respect to Ca2+.  相似文献   

4.
Mori M  Konno T  Ozawa T  Murata M  Imoto K  Nagayama K 《Biochemistry》2000,39(6):1316-1323
The voltage-dependent sodium channel (VDSC) interacts with intracellular molecules to modulate channel properties and localizations in neuronal cells. To study protein interactions, we applied yeast two-hybrid screening to the cytoplasmic C-terminal domain of the main pore-forming alpha-subunit. We found a novel interaction between the C-terminal domain and calmodulin (CaM). By two-hybrid interaction assays, we specified the interaction site of VDSC in a C-terminal region, which is composed of 38 amino acid residues and contains both IQ-like and Baa motifs. Using a fusion protein of the C-terminal domain, we showed that interaction with CaM occurred in the presence and absence of Ca(2+). Two synthetic peptides, each covering the IQ-like (NaIQ) or the Baa motifs (NaBaa), were used to examine the binding property by a gel mobility shift assay. Although the NaIQ and NaBaa sequences are overlapped, NaBaa binds only to Ca(2+)-bound Ca(2+)CaM, whereas NaIQ binds to both Ca(2+)CaM and Ca(2+)-free apoCaM. Fluorescence spectroscopy of dansylated CaM showed Ca(2+)-dependent spectral changes not only for NaBaa.CaM but also for NaIQ.CaM. The results, taken together with other results, indicate that whereas the NaBaa.CaM complex is formed in a Ca(2+)-dependent manner, the NaIQ.CaM complex has two conformational states, distinct with respect to the peptide binding site and the CaM conformation, depending on the Ca(2+) concentration. These observations suggest the possibility that VDSC is functionally modulated through the direct CaM interaction and the Ca(2+)-dependent conformational transition of the complex.  相似文献   

5.
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, such as those formed by Sec61 complexes in the ER membrane, would interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism of intracellular signaling. We identified a calmodulin (CaM) binding motif in the cytosolic N-terminus of Sec61α from Canis familiaris that binds CaM, but not Ca(2+)-free apo-CaM, with nanomolar affinity and sequence specificity. In single channel lipid bilayer measurements, CaM potently mediated Sec61-channel closure in a Ca(2+)-dependent manner. No functional CaM binding motif was identified in the corresponding region of Sec61p from Saccharomyces cerevisiae, and no channel closure occurred in the presence of CaM and Ca(2+). Therefore, CaM binding to the cytosolic N-terminus of Sec61α is involved in limiting Ca(2+)-leakage from the ER in C. familiaris but not S. cerevisiae.  相似文献   

6.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

7.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

8.
Heller WT  Krueger JK  Trewhella J 《Biochemistry》2003,42(36):10579-10588
We have gained new insight into the interactions between the second-messenger protein calmodulin (CaM) and myosin light chain kinase from skeletal muscle (skMLCK) using small-angle solution scattering and shape restoration. Specifically, we explored the nature of a 2Ca(2+)-CaM-skMLCK complex and compared it to a 4Ca(2+)-CaM-skMLCK complex under the same conditions. The 2Ca(2+) complex has been proposed to be physiologically relevant. To aid in the interpretation of the data, we developed a shape restoration approach, implemented in GA_STRUCT, that combines many of the best features of other available methods into a single, automated package. Importantly, GA_STRUCT explicitly addresses the problem of the existence of multiple solutions to the inverse scattering problem and produces a consensus envelope from a set of shapes that fit the input intensity. Small-angle scattering intensity profiles measured or calculated from known structures were used to test GA_STRUCT, which was then used to generate low-resolution models for three complexes: 2Ca(2+)-CaM-skMLCK, 4Ca(2+)-CaM-skMLCK, and 4Ca(2+)-CaM-skMLCK with a bound substrate. These models were used in conjunction with high-resolution structures of the protein components to better understand the interactions among them. In the case of the 2Ca(2+)-CaM-skMLCK complex, the consensus envelope is consistent with CaM in a fully collapsed state with its two globular lobes in close contact with each other while the catalytic cleft of the kinase is open. The consensus envelope for the 4Ca(2+)-CaM-skMLCK complex indicates that the collapsed CaM has swung further away from the open catalytic cleft of the skMLCK than in the 2Ca(2+) complex, and further that substrate binding to this complex results in closure of the kinase catalytic cleft, in agreement with previous neutron scattering results. These results indicate that activation of MLCK by CaM can only occur once CaM is fully translocated away from the catalytic cleft, which is presumably linked to full release of the pseudo-substrate/inhibitory sequence. Our scattering data indicate that this step is completed only when all four calcium binding sites are loaded.  相似文献   

9.
The N-terminal modules of cardiac myosin-binding protein C (cMyBP-C) play a regulatory role in mediating interactions between myosin and actin during heart muscle contraction. The so-called "motif," located between the second and third immunoglobulin modules of the cardiac isoform, is believed to modulate contractility via an "on-off" phosphorylation-dependent tether to myosin ΔS2. Here we report a novel Ca(2+)-dependent interaction between the motif and calmodulin (CaM) based on the results of a combined fluorescence, NMR, and light and x-ray scattering study. We show that constructs of cMyBP-C containing the motif bind to Ca(2+)/CaM with a moderate affinity (K(D) ~10 μm), which is similar to the affinity previously determined for myosin ΔS2. However, unlike the interaction with myosin ΔS2, the Ca(2+)/CaM interaction is unaffected by substitution with a triphosphorylated motif mimic. Further, Ca(2+)/CaM interacts with the highly conserved residues (Glu(319)-Lys(341)) toward the C-terminal end of the motif. Consistent with the Ca(2+) dependence, the binding of CaM to the motif is mediated via the hydrophobic clefts within the N- and C-lobes that are known to become more exposed upon Ca(2+) binding. Overall, Ca(2+)/CaM engages with the motif in an extended clamp configuration as opposed to the collapsed binding mode often observed in other CaM-protein interactions. Our results suggest that CaM may act as a structural conduit that links cMyBP-C with Ca(2+) signaling pathways to help coordinate phosphorylation events and synchronize the multiple interactions between cMyBP-C, myosin, and actin during the heart muscle contraction.  相似文献   

10.
Hu J  Jia X  Li Q  Yang X  Wang K 《Biochemistry》2004,43(10):2688-2698
Binding of La(3+) to calmodulin (CaM) and its effects on the complexes of CaM and CaM-binding peptide, polistes mastoparan (Mas), were investigated by nuclear magnetic resonance (NMR) spectroscopy, fluorescence and circular dichroism spectroscopy, and by the fluorescence stopped-flow method. The four binding sites of La(3+) on CaM were identified as the same as the binding sites of Ca(2+) on CaM through NMR titration of La(3+) to uniformly (15)N-labeled CaM. La(3+) showed a slightly higher affinity to the binding sites on the N-terminal domain of CaM than that to the C-terminal. Large differences between the (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of Ca(4)CaM and La(4)CaM suggest conformational differences between the two complexes. Fluorescence and CD spectra also exhibited structural differences. In the presence of Ca(2+) and La(3+), a hybrid complex, Ca(2)La(2)CaM, was formed, and the binding of La(3+) to the N-terminal domain of CaM seemed preferable over binding to the C-terminal domain. Through fluorescence titration, it was shown that La(4)CaM and Ca(2)La(2)CaM had similar affinities to Mas as Ca(4)CaM. Fluorescence stopped-flow experiments showed that the dissociation rate of La(3+) from the C-terminal domain of CaM was higher than that from the N-terminal. However, in the presence of Mas, the dissociation rate of La(3+) decreased and the dissociation processes from both global domains were indistinguishable. In addition, compared with the case of Ca(4)CaM-Mas, the slower dissociations of Mas from La(4)CaM-Mas and Ca(2)La(2)CaM-Mas complexes indicate that in the presence of La(3+), the CaM-Mas complex became kinetically inert. A possible role of La(3+) in the Ca(2+)-CaM-dependent pathway is discussed.  相似文献   

11.
Ion selectivities for Ca(2+) signaling pathways of 33 metal ions were examined based on the Ca(2+)-dependent on/off switching mechanism of calmodulin (CaM): Ca(2+) ion-induced selective binding of CaM-Ca(2+) ion complex to the target peptide was observed as an increase in surface plasmon resonance (SPR) signals. As the target peptide, M13 of 26-amino-acid residues derived from skeletal muscle myosin light-chain kinase was immobilized in the dextran matrix, over which sample solutions containing CaM and each metal ion were injected in a flow system. Large changes in SPR signals were also observed for Sr(2+), Ba(2+), Cd(2+), Pb(2+), Y(3+) and trivalent lanthanide ions, thereby indicating that not only Ca(2+) but also these metal ions induce the formation of CaM-M13-metal ion ternary complex. No SPR signal was, however, induced by Mg(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and all monovalent metal ions examined. The latter silent SPR signal indicates that these ions, even if they bind to CaM, are incapable of forming the CaM-M13-metal ion ternary complex. Comparing the obtained SPR results with ionic radii of those metal ions, it was found that all cations examined with ionic radii close to or greater than that of Ca(2+) induced the formation of the CaM-metal-M13 ternary complex, whereas those with smaller ionic radii were not effective, or much less so. Since these results are so consistent with earlier systematic data for the effects of various metal ions on the conformational changes of CaM, it is concluded that the present SPR analysis may be used for a simple screening and evaluating method for physiologically relevant metal ion selectivity for the Ca(2+) signaling via CaM based on CaM/peptide interactions.  相似文献   

12.
Thrombin-induced endothelial cell barrier dysfunction is tightly linked to Ca(2+)-dependent cytoskeletal protein reorganization. In this study, we found that thrombin increased Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) activities in a Ca(2+)- and time-dependent manner in bovine pulmonary endothelium with maximal activity at 5 min. Pretreatment with KN-93, a specific CaM kinase II inhibitor, attenuated both thrombin-induced increases in monolayer permeability to albumin and decreases in transendothelial electrical resistance (TER). We next explored potential thrombin-induced CaM kinase II cytoskeletal targets and found that thrombin causes translocation and significant phosphorylation of nonmuscle filamin (ABP-280), which was attenuated by KN-93, whereas thrombin-induced myosin light chain phosphorylation was unaffected. Furthermore, a cell-permeable N-myristoylated synthetic filamin peptide (containing the COOH-terminal CaM kinase II phosphorylation site) attenuated both thrombin-induced filamin phosphorylation and decreases in TER. Together, these studies indicate that CaM kinase II activation and filamin phosphorylation may participate in thrombin-induced cytoskeletal reorganization and endothelial barrier dysfunction.  相似文献   

13.
Calmodulin (CaM) binds in a Ca2+-dependent manner to the intracellular C-terminal domains of most group III metabotropic glutamate receptors (mGluRs). Here we combined mutational and biophysical approaches to define the structural basis of CaM binding to mGluR 7A. Ca2+/CaM was found to interact with mGluR 7A primarily via its C-lobe at a 1:1 CaM:C-tail stoichiometry. Pulldown experiments with mutant CaM and mGluR 7A C-tail constructs and high resolution NMR with peptides corresponding to the CaM binding region of mGluR 7A allowed us to define hydrophobic and ionic interactions required for Ca2+/CaM binding and identified a 1-8-14 CaM-binding motif. The Ca2+/CaM.mGluR 7A peptide complex displays a classical wraparound structure that closely resembles that formed by Ca2+/CaM upon binding to smooth muscle myosin light chain kinase. Our data provide insight into how Ca2+/CaM regulates group III mGluR signaling via competition with intracellular proteins for receptor-binding sites.  相似文献   

14.
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.  相似文献   

15.
Lukas TJ 《Biophysical journal》2004,87(3):1417-1425
An agonist-initiated Ca(2+) signaling model for calmodulin (CaM) coupled to the phosphorylation of myosin light chains was created using a computer-assisted simulation environment. Calmodulin buffering was introduced as a module for directing sequestered CaM to myosin light chain kinase (MLCK) through Ca(2+)-dependent release from a buffering protein. Using differing simulation conditions, it was discovered that CaM buffering allowed transient production of more Ca(2+)-CaM-MLCK complex, resulting in elevated myosin light chain phosphorylation compared to nonbuffered control. Second messenger signaling also impacts myosin light chain phosphorylation through the regulation of myosin light chain phosphatase (MLCP). A model for MLCP regulation via its regulatory MYPT1 subunit and interaction of the CPI-17 inhibitor protein was assembled that incorporated several protein kinase subsystems including Rho-kinase, protein kinase C (PKC), and constitutive MYPT1 phosphorylation activities. The effects of the different routes of MLCP regulation depend upon the relative concentrations of MLCP compared to CPI-17, and the specific activities of protein kinases such as Rho and PKC. Phosphorylated CPI-17 (CPI-17P) was found to dynamically control activity during agonist stimulation, with the assumption that inhibition by CPI-17P (resulting from PKC activation) is faster than agonist-induced phosphorylation of MYPT1. Simulation results are in accord with literature measurements of MLCP and CPI-17 phosphorylation states during agonist stimulation, validating the predictive capabilities of the system.  相似文献   

16.
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.  相似文献   

17.
The Ca2+ -activated neutral protease can proteolyze both Ca2+ -dependent cyclic nucleotide phosphodiesterase and smooth muscle myosin light chain kinase. Ca2+ -dependent cyclic nucleotide phosphodiesterase from rat brain was converted to the Ca2+ -independent active form by Ca2+ -activated protease. The proteolytic effects on myosin light chain kinase of Ca2+-activated protease differed in the presence and absence of the Ca2+-calmodulin (CaM) complex. In the presence of bound CaM, myosin light chain kinase (130k dalton) was degradated to a major fragment of 62 kDa, which had Ca2+/CaM-dependent enzyme and CaM-binding activity. When digestion occurred in the absence of bound CaM, myosin light chain kinase cleaved to a fragment of 60 kDa. This peptide had no enzymatic activity in the presence or absence of the Ca2+-CaM complex. Available evidence suggests that the Ca2+-activated proteases may recognize the conformational change of smooth muscle myosin light chain kinase induced by Ca2+-CaM complex.  相似文献   

18.
Murase T  Iio T 《Biochemistry》2002,41(5):1618-1629
Ca(2+)-induced complex formation between calmodulin (CaM) and mastoparanX (MasX) was studied by a fluorescence spectroscopy and by a stopped-flow method. The measurements of the fluorescence anisotropy in the presence of calcium and the fluorescence titration with Ca(2+) revealed that the N- and C-domains of CaM bound cooperatively MasX, while the tryptic fragments of CaM (TR(1)C, 1-77 and TR(2)C, 78-148) bound independently MasX. The Trp-fluorescence stopped-flow experiments revealed that the Ca(2+)-induced binding of CaM and MasX was composed of two processes: one was a rapid binding of the N-domain of CaM to MasX, which was induced by the rapid Ca(2+) binding to the N-sites of CaM. The other was a slow biphasic process. Its fast phase was the binding of the C-domain of CaM to MasX, which was induced by the slow Ca(2+) binding to the C-sites. Interestingly, the kinetics of the slow process varied with the Ca(2+) concentrations. At the low Ca(2+) concentrations, its rate constant increased to around 20 s(-1) as the Ca(2+) concentration increased. At the high Ca(2+) concentrations, the Ca(2+)-induced binding of the C-domain of CaM to MasX proceeded at a constant rate around 20 s(-1). This suggested an existence of a rate-limiting step for the Ca(2+)-induced binding of the C-domain of CaM to MasX at the high Ca(2+) concentrations. The slow phase of the slow process may be a rearrangement of the CaM-MasX complex. These results led to our model of a molecular kinetic mechanism of the Ca(2+)-induced complex formation between CaM and MasX.  相似文献   

19.
Transient influx of Ca(2+) constitutes an early event in the signaling cascades that trigger plant defense responses. However, the downstream components of defense-associated Ca(2+) signaling are largely unknown. Because Ca(2+) signals are mediated by Ca(2+)-binding proteins, including calmodulin (CaM), identification and characterization of CaM-binding proteins elicited by pathogens should provide insights into the mechanism by which Ca(2+) regulates defense responses. In this study, we isolated a gene encoding rice Mlo (Oryza sativa Mlo; OsMlo) using a protein-protein interaction-based screening of a cDNA expression library constructed from pathogen-elicited rice suspension cells. OsMlo has a molecular mass of 62 kDa and shares 65% sequence identity and scaffold topology with barley Mlo, a heptahelical transmembrane protein known to function as a negative regulator of broad spectrum disease resistance and leaf cell death. By using gel overlay assays, we showed that OsMlo produced in Escherichia coli binds to soybean CaM isoform-1 (SCaM-1) in a Ca(2+)-dependent manner. We located a 20-amino acid CaM-binding domain (CaMBD) in the OsMlo C-terminal cytoplasmic tail that is necessary and sufficient for Ca(2+)-dependent CaM complex formation. Specific binding of the conserved CaMBD to CaM was corroborated by site-directed mutagenesis, a gel mobility shift assay, and a competition assay with a Ca(2+)/CaM-dependent enzyme. Expression of OsMlo was strongly induced by a fungal pathogen and by plant defense signaling molecules. We propose that binding of Ca(2+)-loaded CaM to the C-terminal tail may be a common feature of Mlo proteins.  相似文献   

20.
Ribosomes are the protein factories of every living cell. The process of protein translation is highly complex and tightly regulated by a large number of diverse RNAs and proteins. Earlier studies indicate that Ca(2+) plays a role in protein translation. Calmodulin (CaM), a ubiquitous Ca(2+)-binding protein, regulates a large number of proteins participating in many signaling pathways. Several 40S and 60S ribosomal proteins have been identified to interact with CaM, and here, we report that CaM binds with high affinity to 80S ribosomes and polyribosomes in a Ca(2+)-dependent manner. No binding is observed in buffer with 6 mM Mg(2+) and 1 mM EGTA that chelates Ca(2+), suggesting high specificity of the CaM-ribosome interaction dependent on the Ca(2+) induced conformational change of CaM. The interactions between CaM and ribosomes are inhibited by synthetic peptides comprising putative CaM-binding sites in ribosomal proteins S2 and L14. Using a cell-free in vitro translation system, we further found that these synthetic peptides are potent inhibitors of protein synthesis. Our results identify an involvement of CaM in the translational activity of ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号