首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In normal colon, ACh elicits a luminally directed Cl- efflux from enterocytes via activation of muscarinic receptors. In contrast, in the murine model of dextran sodium sulfate (DSS)-induced colitis, an inhibitory cholinergic ion transport event due to nicotinic receptor activation has been identified. The absence of nicotinic receptors on enteric epithelia and the ability of nitric oxide (NO) to modulate ion transport led us to hypothesize that NO mediated the cholinergic nicotinic receptor-induced changes in ion transport. Midportions of colon from control and DSS-treated mice were examined for inducible NO synthase (iNOS) expression by RT-PCR and immunofluorescence or mounted in Ussing chambers for assessment of cholinergic-evoked changes in ion transport (i.e., short-circuit current) with or without pretreatment with pharmacological inhibitors of NO production. iNOS mRNA and protein levels were increased throughout the tissue from DSS-treated mice and, notably, in the myenteric plexus, where the majority of iNOS immunoreactivity colocalized with the enteric glial cell marker glial fibrillary acidic protein. The drop in short-circuit current evoked by the cholinomimetic carbachol in tissue from DSS-treated mice was prevented by selective inhibitors of iNOS activity [N6-(1-iminoethyl)-lysine HCl and N-[3-(aminomethyl)benzyl]acetamidine] or an NO scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] or by removal of the myenteric plexus. Thus, in this model of colitis, a "switch" occurs from muscarinic to nicotinic receptor-dominated control of cholinergic ion transport. The data indicate a novel pathway involving activation of nicotinic receptors on myenteric neurons, resulting in release of NO from neurons or enteric glia and, ultimately, a dampening of stimulated epithelial Cl- secretion that would reduce secretory diarrhea.  相似文献   

2.
MEP1A, which encodes the α subunit of meprin metalloproteinases, is a susceptibility gene for inflammatory bowel disease (IBD), and decreased intestinal meprin-α expression is associated with enhanced IBD in humans. Mice lacking meprin α (α knockout, αKO) have more severe colitis induced by dextran sulfate sodium (DSS) than wild-type (WT) mice, indicating an anti-inflammatory role for meprin A. Previous studies and those herein indicate the meprin B has proinflammatory activities. Therefore, mice lacking both meprin A and B (dKO mice) were generated to determine how their combined absence alters the inflammatory response to DSS. Unchallenged dKO mice grow and reproduce normally and have no obvious abnormal phenotype, except for a slightly elevated plasma albumin in both males and females and a lower urine creatinine level in dKO males. Upon oral administration of 3.5% DSS, the dKO mice have more severe colitis than the WT and βKO mice but significantly less than the αKO mice. The dKO mice lose more weight and have elevated MPO and IL-6 activities in the colon compared with WT mice. Systemic inflammation, monitored by plasma nitric oxide levels, is absent in DSS-treated dKO mice, unlike WT mice. The severity of experimental IBD in dKO mice is intermediate between αKO and WT mice. The data indicate that the absence of meprin A aggravates chronic inflammation and the lack of meprin B affords some protection from injury. Manipulation of the expression of meprin gene products may have therapeutic potential.  相似文献   

3.
GPR65 (TDAG8) is a proton-sensing G protein-coupled receptor predominantly expressed in immune cells. Genome-wide association studies (GWAS) have identified GPR65 gene polymorphisms as an emerging risk factor for the development of inflammatory bowel disease (IBD). Patients with IBD have an elevated risk of developing colorectal cancer when compared to the general population. To study the role of GPR65 in intestinal inflammation and colitis-associated colorectal cancer (CAC), colitis and CAC were induced in GPR65 knockout (KO) and wild-type (WT) mice using dextran sulfate sodium (DSS) and azoxymethane (AOM)/DSS, respectively. Disease severity parameters such as fecal score, colon shortening, histopathology, and mesenteric lymph node enlargement were aggravated in GPR65 KO mice compared to WT mice treated with DSS. Elevated leukocyte infiltration and fibrosis were observed in the inflamed colon of GPR65 KO when compared to WT mice which may represent a cellular mechanism for the observed exacerbation of intestinal inflammation. In line with high expression of GPR65 in infiltrated leukocytes, GPR65 gene expression was increased in inflamed intestinal tissue samples of IBD patients compared to normal intestinal tissues. Moreover, colitis-associated colorectal cancer development was higher in GPR65 KO mice than WT mice when treated with AOM/DSS. Altogether, our data demonstrate that GPR65 suppresses intestinal inflammation and colitis-associated tumor development in murine colitis and CAC models, suggesting potentiation of GPR65 with agonists may have an anti-inflammatory therapeutic effect in IBD and reduce the risk of developing colitis-associated colorectal cancer.  相似文献   

4.

Background

MicroRNA-21 (miR-21) is overexpressed in most inflammatory diseases, but its physiological role in gut inflammation and tissue injury is poorly understood. The goal of this work is to understand the role of miR-21 in colitis and damage progression of intestine in a genetically modified murine model.

Methods

Experimental colitis was induced in miR-21 KO and wild-type (WT) mice by 3.5% dextran sulphate sodium (DSS) administration for 7 days. Disease activity index(DAI), blood parameters, intestinal permeability, histopathologic injury, cytokine and chemokine production, and epithelial cells apoptosis were examined in colons of miR-21 KO and WT mice.

Results

miR-21 was overexpressed in intestine of inflammatory bowel diseases (IBD) and acute intestinal obstruction (AIO) patients when compared with normal intestinal tissues. Likewise, miR-21 was up-regulated in colon of IL-10 KO mice when compared with control mice. WT mice rapidly lost weight and were moribund 5 days after treatment with 3.5% DSS, while miR-21 KO mice survived for at least 6 days. Elevated leukocytes and more severe histopathology were observed in WT mice when compared with miR-21 KO mice. Elevated levels of TNF-α and macrophage inflammatory protein-2(MIP-2) in colon culture supernatants from WT mice exhibited significant higher than miR-21 KO mice. Furthermore, CD3 and CD68 positive cells, intestinal permeability and apoptosis of epithelial cells were significantly increased in WT mice when compared with miR-21 KO mice. Finally, we found that miR-21 regulated the intestinal barrier function through modulating the expression of RhoB and CDC42.

Conclusion

Our results suggest that miR-21 is overexpressed in intestinal inflammation and tissue injury, while knockout of miR-21 in mice improve the survival rate in DSS-induced fatal colitis through protecting against inflammation and tissue injury. Therefore, attenuated expression of miR-21 in gut may prevent the onset or progression of inflammatory bowel disease in patients.  相似文献   

5.
Clostridium difficile has emerged as the important causative agent of antibiotics-associated pseudomembranous colitis; especially its toxin A is presumed to be responsible for the colitis. We examined the pathophysiological roles of IFN-gamma in toxin A-induced enteritis using IFN-gamma knockout (KO) mice. When toxin A of C. difficile was injected into the ileal loops of BALB/c wild-type (WT) mice, massive fluid secretion, disruption of intestinal epithelial structure, and massive neutrophil infiltration developed within 4 h after the injection. IFN-gamma protein was faintly detected in some CD3-positive lymphocytes in the lamina propria and submucosa of the ileum of untreated WT mice. On the contrary, at 2 and 4 h after toxin A injection, IFN-gamma protein was detected in infiltrating neutrophils and to a lesser degree in CD3-positive lymphocytes. In the ileum of WT mice, toxin A treatment markedly enhanced the gene expression of TNF-alpha, macrophage inflammatory protein-1alpha and -2, KC, and ICAM-1 >2 h after treatment. In contrast, the histopathological changes were marginal, without enhanced fluid secretion in the ileum of toxin A-treated IFN-gamma KO mice. Moreover, toxin A-induced gene expression of TNF-alpha, neutrophil chemotactic chemokines, and ICMA-1 was remarkably attenuated in IFN-gamma KO mice. Furthermore, pretreatment of WT mice with a neutralizing anti-IFN-gamma Ab prevented toxin A-induced enteritis. These observations indicate that IFN-gamma is the crucial mediator of toxin A-induced acute enteritis and suggest that IFN-gamma is an important molecular target for the control of C. difficile-associated pseudomembranous colitis.  相似文献   

6.

Background

IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote type 2 while suppressing Th1 and Th17 responses. Several previous studies reported inconsistent results on the role of exogenous IL-25 in development of colonic inflammation and none were performed in animals with a genetic deletion of IL-25. We investigated the contribution of endogenous IL-25 to DSS-induced colitis using mice deficient in IL-25.

Results

Mice were exposed to DSS in drinking water ad libitum either for seven days (acute) or for three cycles of seven days with DSS followed by 14 days without DSS (chronic) to induce colitis, respectively. The loss of body weight, appearance of diarrhea and bloody stools, and shortening of colon length were significantly less pronounced in IL-25?/? mice compared to WT mice after exposure to acute DSS. Histological examination showed that DSS-treated IL-25?/? mice had only mild inflammation in the colon, while severe inflammation developed in DSS-treated WT mice. A significant up-regulation of IL-33 was observed in acute DSS-treated WT but not in the IL-25?/? mice. There was significantly lower expression of pro-inflammatory cytokines in the colon of acute DSS-treated IL-25?/? compared to WT mice. IL-25?/? mice were also partially protected from chronic DSS challenge especially during the first 2 cycles of DSS exposure. In contrast to IL-25?/? mice, IL-13?/? mice were more susceptible to DSS-induced colitis. Finally, stimulation of T84 colonic epithelial cells with IL-25 up-regulated the expression of IL-33 and several pro-inflammatory cytokines.

Conclusions

These data indicate that endogenous IL-25 acts as a pro-inflammatory factor in DSS-induced colitis, which is unlikely to be mediated by IL-13 but possibly the induction of IL-33 and other pro-inflammatory mediators from colonic epithelial cells. The present study suggests that IL-25 may contribute to the pathogenesis of inflammatory bowel disease in at least a subgroup of patients.
  相似文献   

7.

Background and aim

CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD).

Methods

Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA.

Results

CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection.

Conclusions

The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice.  相似文献   

8.
Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis.  相似文献   

9.
Suppressed parasympathetic nervous system (PSNS) function has been found in a variety of cardiovascular diseases, such as hypertension, heart failure, and diabetes. However, whether impaired PSNS function plays a significant role in ventricular dysfunction remains to be investigated. Cardiac regulation by the PSNS is primarily mediated by the M(2) muscarinic acetylcholine receptor (M(2)-AChR). In this study, we tested the hypothesis that lack of M(2)-AChR-mediated PSNS function may adversely impact cardiac ventricular function. Using M(2)-AChR knockout (KO) and wild-type (WT) mice, we found that the basal levels of heart rate and left ventricular function were similar in M(2)-AChR KO and WT mice. A bolus injection of isoproterenol (Iso) induced a greater increase in heart rate in M(2)-AChR KO mice than in WT mice. However, the responses of change in pressure over time (dP/dt) to Iso were similar in the two groups. After chronic infusion with Iso for 1 wk, the baseline values of left ventricular function were increased to similar extents in M(2)-AChR KO and WT mice. However, the M(2)-AChR KO mice exhibited impaired ventricular function, indicated as attenuated dP/dt and increased end-diastolic pressure, during an increase in cardiac afterload induced by a bolus injection of phenylephrine. Furthermore, chronic Iso infusion significantly increased matrix metalloproteinase (MMP) activity in the heart in M(2)-AChR KO mice. In primary culture of mixed neonatal rat cardiac fibroblast and cardiomyocytes, cotreatment with muscarinic agonist bethanechol reversed phenylephrine-induced increase in MMP-9 activation. These data suggest that M(2)-AChR may mediate an inhibitory regulation on MMP function. The overall results from this study suggest that M(2)-AChR-mediated PSNS function may provide cardiac protection. Lack of this protective mechanism will increase the susceptibility of the heart to cardiac stresses.  相似文献   

10.
Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.  相似文献   

11.
Osteopontin (OPN), a pro-inflammatory mediator, is constitutively expressed in normal gut and is upregulated in inflammatory colitis. To determine the significance of OPN in inflammatory bowel disease, we studied the development of acute, experimental colitis induced by dextran sulfate sodium (DSS) in OPN-null and wild-type (WT) mice. OPN expression was markedly increased in WT diseased colons, while a higher disease activity index, including spleen enlargement, bowel shortening, and mucosal destruction, was observed in OPN-null mice. Although peripheral blood neutrophil numbers were lower in DSS-treated OPN-null mice, tissue myeloperoxidase levels, reflecting enhanced neutrophil activity, were increased in the diseased colons. In comparison, lymphocyte numbers in peripheral blood were increased earlier than in DSS-treated WT mice. Despite a significantly greater spleen enlargement, flow cytometric analysis of splenocytes from the DSS-treated OPN-null mice revealed lower numbers of differentiated macrophages and (CD4+ and CD8alpha+) lymphocytes. Whereas pro-inflammatory cytokines, including G-CSF, RANTES, MIP1alpha, and TNF-alpha, were increased < 10-fold in DSS-treated WT splenocytes, expression of these cytokines was dramatically suppressed in the DSS-treated OPN-null splenocytes as well as gut tissues. The suppressed TNF-alpha response in OPN-null mice was reflected in a marked increase in non-apoptotic cell death in diseased colons. Collectively, these studies demonstrate that OPN is required for mucosal protection in acute inflammatory colitis.  相似文献   

12.
Human inflammatory bowel diseases (IBD) are associated with significant alterations in intestinal blood flow, the direction and magnitude of which change with disease progression. The objectives of this study were to determine the time course of changes in colonic blood perfusion that occur during the development of dextran-sodium-sulfate (DSS)-induced colonic inflammation and to address the mechanisms that may underlie these changes in blood flow. Intravital microscopy was used to quantify blood flow (from measurements of vessel diameter and red blood cell velocity) in different-sized submucosal arterioles of control and inflamed colons in wild-type (WT) mice. A significant (18-30%) reduction in blood flow was noted in the smallest arterioles (<40 microm diameter) on days 4-6 of DSS colitis. The arteriolar responses to bradykinin in control and DSS-treated WT mice revealed an impaired endothelium-dependent, but not endothelium-independent, vasodilation in the inflamed colon. However, this impaired vasodilatory response to bradykinin after DSS treatment was not evident in mutant mice that overexpress Cu,Zn-superoxide dismutase. Rescue of the bradykinin-induced vasodilation during DSS colitis was also observed in mice that are genetically deficient in the NAD(P)H oxidase subunit gp91(phox). These findings indicate that the decline in blood flow during experimental colitis may result from a diminished capacity of colonic arterioles to respond to endogenous endothelium-dependent vasodilators like bradykinin and that NAD(P)H oxidase-derived superoxide plays a major role in the induction of the inflammation-induced endothelium-dependent arteriolar dysfunction.  相似文献   

13.

Background

We have previously reported that intestinal epithelium-specific TAK1 deleted mice exhibit severe inflammation and mortality at postnatal day 1 due to TNF-induced epithelial cell death. Although deletion of TNF receptor 1 (TNFR1) can largely rescue those neonatal phenotypes, mice harboring double deletion of TNF receptor 1 (TNFR1) and intestinal epithelium-specific deletion of TAK1 (TNFR1KO/TAK1IEKO) still occasionally show increased inflammation. This indicates that TAK1 is important for TNF-independent regulation of intestinal integrity.

Methodology/Principal Findings

In this study, we investigated the TNF-independent role of TAK1 in the intestinal epithelium. Because the inflammatory conditions were sporadically developed in the double mutant TNFR1KO/TAK1IEKO mice, we hypothesize that epithelial TAK1 signaling is important for preventing stress-induced barrier dysfunction. To test this hypothesis, the TNFR1KO/TAK1IEKO mice were subjected to acute colitis by administration of dextran sulfate sodium (DSS). We found that loss of TAK1 significantly augments DSS-induced experimental colitis. DSS induced weight loss, intestinal damages and inflammatory markers in TNFR1KO/TAK1IEKO mice at higher levels compared to the TNFR1KO control mice. Apoptosis was strongly induced and epithelial cell proliferation was decreased in the TAK1-deficient intestinal epithelium upon DSS exposure. These suggest that epithelial-derived TAK1 signaling is important for cytoprotection and repair against injury. Finally, we showed that TAK1 is essential for interleukin 1- and bacterial components-induced expression of cytoprotective factors such as interleukin 6 and cycloxygenase 2.

Conclusions

Homeostatic cytokines and microbes-induced intestinal epithelial TAK1 signaling regulates cytoprotective factors and cell proliferation, which is pivotal for protecting the intestinal epithelium against injury.  相似文献   

14.
We developed an in vitro organ bath method to measure permeability and contractility simultaneously in murine intestinal segments. To investigate whether permeability and contractility are correlated and influenced by mucosal damage owing to inflammation, BALB/c mice were exposed to a 10% dextran sulphate sodium (DSS) solution for 8 days to induce colitis. The effect of pharmacologically induced smooth muscle relaxation and contraction on permeability was tested in vitro. Regional permeability differences were observed in both control and 10% DSS-treated mice. Distal colon segments were less permeable to 3H-mannitol and 14C-PEG 400 molecules compared with proximal colon and ileum. Intestinal permeability in control vs. 10% DSS mice was not altered, although histologic inflammation score and IFN-gamma pro-inflammatory cytokine levels were significantly increased in proximal and distal colon. IL-1beta levels were enhanced in these proximal and distal segments, but not significantly different from controls. Any effect of pharmacologically induced contractility on intestinal permeability could not be observed. In conclusion, intestinal permeability and contractility are not correlated in this model of experimentally induced colitis in mice. Although simultaneous measurement in a physiological set-up is possible, this method has to be further validated.  相似文献   

15.
Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.  相似文献   

16.
Previous work has suggested that the LIGHT-TR2 costimulatory pathway plays a role in the acute and chronic stages of dextran sulfate sodium (DSS)-induced colitis [Steinberg et al. (2008); Wang et al. (2005)]. To clarify the role of TNFR-related 2 (TR2) signaling in the maintenance of intestinal homeostasis, we generated a TR2 knock-out (KO) mouse. Using DSS to induce colitis, we compared the colitic symptoms and pathological changes in wild type (WT) and TR2 KO mice, and the production of cytokines by the diseased colons. We also studied the role of TR2 in suppressing innate and adaptive immunity in the DSS model. TR2 deficient mice were characterized by reduced symptoms of intestinal inflammation compared with wild-type mice, and reduced production of cytokines. We therefore generated a monoclonal antibody against mouse TR2 which was specific to TR2 and capable of blocking TR2 signals. With this antibody, we demonstrated that antagonizing TR2 during the development of DSS-induced colitis reduced the symptoms of inflammation. Our findings suggest that TR2 is an important mediator in colitis, and may serve as a therapeutic target in inflammatory bowel disease.  相似文献   

17.
CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens.  相似文献   

18.
Muscarinic acetylcholine receptors play an important role in the regulation of gastric acid secretion stimulated by acetylcholine; nonetheless, the precise role of each receptor subtype (M(1)-M(5)) remains unclear. This study examined the involvement of M(1), M(3), and M(5) receptors in cholinergic regulation of acid secretion using muscarinic receptor knockout (KO) mice. Gastric acid secretion was measured in both mice subjected to acute gastric fistula production under urethane anesthesia and conscious mice that had previously undergone pylorus ligation. M(3) KO mice exhibited impaired gastric acid secretion in response to carbachol. Unexpectedly, M(1) KO mice exhibited normal intragastric pH, serum gastrin and mucosal histamine levels, and gastric acid secretion stimulated by carbachol, histamine, and gastrin. Pirenzepine, known as an M(1)-receptor antagonist, inhibited carbachol-stimulated gastric acid secretion in a dose-dependent manner in M(1) KO mice as well as in wild-type (WT) mice, suggesting that the inhibitory effect of pirenzepine on gastric acid secretion is independent of M(1)-receptor antagonism. Notably, M(5) KO mice exhibited both significantly lower carbachol-stimulated gastric acid secretion and histamine-secretory responses to carbachol compared with WT mice. RT-PCR analysis revealed M(5)-mRNA expression in the stomach, but not in either the fundic or antral mucosa. Consequently, cholinergic stimulation of gastric acid secretion is clearly mediated by M(3) (on parietal cells) and M(5) receptors (conceivably in the submucosal plexus), but not M(1) receptors.  相似文献   

19.
This study was aimed to evaluate the role of commensal Gram-negative bacterium Bacteroides ovatus in murine model of chronic intestinal inflammation. The attempt to induce chronic colitis was done in Bacteroides ovatus-monoassociated, germ-free and conventional mice either in immunocompetent (BALB/c) mice or in mice with severe combined immunodeficiency (SCID), using 2.5 % dextran-sodium sulfate (DSS) in drinking water (7 days DSS, 7 days water, 7 days DSS). Conventional mice developed chronic colitis. Some of germ-free BALB/c and the majority of germ-free SCID mice did not survive the long-term treatment with DSS due to massive bleeding into the intestinal lumen. However, monocolonization of germ-free mice of both strains with Bacteroides ovatus prior to long-term treatment with DSS protected mice from bleeding, development of intestinal inflammation and precocious death. We observed that though DSS-treated Bacteroides ovatus-colonized SCID mice showed minor morphological changes in colon tissue, jejunal brush-border enzyme activities such as gamma-glutamyltranspeptidase, lactase and alkaline phosphatase were significantly reduced in comparison with DSS-untreated Bacteroides ovatus-colonized mice. This modulation of the enterocyte gamma-glutamyltranspeptidase localized to the brush border membrane has been described for the first time. This enzyme is known to reflect an imbalance between pro-oxidant and anti-oxidant mechanisms, which could be involved in protective effects of colonization of germ-free mice with Bacteroides ovatus against DSS injury.  相似文献   

20.
Persistent intestinal inflammation severely impairs intestinal integrity resulting in inflammatory bowel disease. Red raspberries (RB) are a rich source of bioactive compounds; their beneficial effect on the colitis protection was evaluated in the current study using a dextran sulfate sodium (DSS)-induced acute colitis mouse model. Six-week-old mice were fed a standard rodent research diet supplemented with RB (0 or 5% w/w, n=20 each group) for 6 weeks. At the 4th week of dietary treatment, approximately half of mice in each dietary group (n=12 each group) were subjected to 2.5% DSS induction for 6 days, followed by 6 days of recovery, to induce colitis. RB supplementation decreased body weight loss (P≤.01), disease activity index (P≤.01), and colon shortening (P≤.05) in DSS-treated mice. In addition, RB supplementation protected the colonic structure (P≤.01), associated with suppressed NF-κB signaling and reduced expression of inflammatory interleukin (IL)-1β, IL-6, IL-17, cyclooxegenase-2, and tumor necrosis factor-α in DSS-treated mice. RB supplementation reduced neutrophil infiltration, monocyte chemoattractant protein-1 mRNA expression, and xanthine oxidase content, but enhanced catalase content in DSS-treated mice. Consistently, RB supplementation reduced pore forming tight junction protein claudin-2, increased barrier strengthening claudin-3, zonula occluden-1 protein content and mucin (MUC)-2 mRNA level, and activated AMP-activated protein kinase (AMPK) in DSS-treated mice. In conclusion, dietary RB protected against inflammation and colitis symptoms induced by DSS, providing a promising dietary approach for the management of colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号