首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A partial genomic clone of the flavoprotein subunit of the mitochondrial enzyme, succinate dehydrogenase (EC 1.3.99.1) from Saccharomyces cerevisiae has been isolated. The partial clone was used to construct, by targeted gene disruption, a yeast mutant with a defective flavoprotein subunit gene. Submitochondrial membranes from the mutant are defective in activities requiring a functional succinate dehydrogenase but not in other respiratory chain activities. In addition, the mutant contains significantly lower levels of covalently attached flavin adenine dinucleotide cofactor than does the wild type. Disruption of the flavoprotein subunit gene results in the simultaneous loss of both the iron-sulfur and the flavoprotein subunits from mitochondrial membranes.  相似文献   

4.
5.
The nucleotide sequence of a 2.7-kilobase segment of DNA containing the sdhA and sdhB genes encoding the flavoprotein (Fp, sdhA) and iron-sulfur protein (Ip, sdhB) subunits of the succinate dehydrogenase of Bacillus subtilis was determined. This sequence extends the previously reported sequence encoding the cytochrome b558 subunit (sdhC) and completes the sequence of the sdh operon, sdhCAB. The predicted molecular weights for the Fp and Ip subunits, 65,186 (585 amino acids) and 28,285 (252 amino acids), agreed with the values determined independently for the labeled Fp and Ip antigens, although it appeared that the B. subtilis Fp was not functional after expression of the sdhA gene in Escherichia coli. Both subunits closely resembled the corresponding Fp and Ip subunits of the succinate dehydrogenase (SDH) and fumarate reductase of E. coli in size, composition, and amino acid sequence. The sequence homologies further indicated that the B. subtilis SDH subunits are equally related to the SDH and fumarate reductase subunits of E. coli but are less closely related than are the corresponding pairs of E. coli subunits. The regions of highest sequence conservation were identifiable as the catalytically significant flavin adenine dinucleotide-binding sites and cysteine clusters of the iron-sulfur centers.  相似文献   

6.
The complete amino acid sequence of the heme alpha-containing subunit V of bovine heart cytochrome oxidase was determined to be: H2N-Ser-His-Gly-Ser-His-Glu-Thr-Asp-Glu-Glu-Phe-Asp-Ala-Arg-Trp-Val-Thr-Tyr-Phe-Asn-Lys-Pro-Asp-Ile-Asp-Ala-Trp-Glu-Leu-Arg-Lys-Gly-Met-Asn-Thr-Leu-Val-Gly-Tyr-Asp-Leu-Val-Pro-Glu-Pro-Lys-Ile-Ile-Asp-Ala-Ala-Leu-Arg-Ala-Cys-Arg-Arg-Leu-Asn-Asp-Phe-Ala-Ser-Ala-Val-Arg-Ile-Leu-Glu-Val-Val-Lys-Asp-Lys-Ala-Gly-Pro-His-Lys-Glu-Ile-Tyr-Pro-Tyr-Val-Ile-Gln-Glu-Leu-Arg-Pro-Thr-Leu-Asn-Glu-Leu-Gly-Ile-Ser-Thr-Pro-Glu-Glu-Leu-Gly-Leu-Asp-Lys-Val-COOH. The subunit V is a single polypeptide which consists of 109 amino acid residues. The protein contains 48.6% hydrophobic residues and 34.0% hydrophilic residues and it is an acidic protein having a net charge of -3 at neutral pH. The molecular weight of subunit V was calculated to be 12,436 and that for the heme alpha-containing polypeptide was 13,295.  相似文献   

7.
The interaction between pig liver mitochondrial electron-transfer flavoprotein (ETF) and general acyl-CoA dehydrogenase (GAD) was investigated by means of the heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. Neither ETF or GAD contained reactive thiol groups. The substitution of 9.4 lysine residues/FAD group in GAD with pyridyl disulphide structures did not affect the catalytic activity of the enzyme. Thiol groups were introduced into ETF by thiolation with methyl 4-mercaptobutyrimidate. ETF containing 10.5 reactive thiol groups/FAD group showed undiminished electron-acceptor activity with respect to GAD. The reaction of thiolated ETF and GAD containing pyridyl disulphide structures resulted in a decreased staining intensity of the small subunit of ETF on SDS/polyacrylamide-gel electrophoresis. Preferential cross-linking of the smaller subunit of ETF to GAD did not take place when ETF was first treated with SDS, but was unaffected by reduction of GAD by octanoyl-CoA.  相似文献   

8.
9.
The amino acid sequence of the 11.6 K dalton heme a subunit of bovine heart cytochrome oxidase has been completed and is presented here. The sequence investigation has established the positions in the protein of all the possible heme ligands, namely cysteine, methionine, histidine and lysine residues. However, the isolation conditions may have caused the heme a to migrate from its original site or the heme is caged by peptides as pointed out in Reference 6. The sequence of the heme a subunit and the β-chain of hemoglobin shows homology. It is possible that these two proteins have arisen from a common ancestor in the distant past.  相似文献   

10.
11.
The amino-terminal sequence of the catalytic subunit of bovine enterokinase   总被引:2,自引:0,他引:2  
Bovine enterokinase (enteropeptidase) is a serine protease and functions as the physiological activator of trypsinogen. The enzyme has a heavy chain (115 kD) covalently linked to a light or catalytic subunit (35 kD). The amino acid composition showed that the light chain has nine half-cystine residues (four as intramolecular disulfides) and that one half-cystine was in a disulfide link between the light and heavy subunits. The amino-terminal 27 residues of the S-vinylpyridyl derivative of the light chain were determined by gas-phase Edman degradation. The sequence has homologies with other serine proteases containing one or two chains. The homologies suggest that the catalytic subunit has the same three-dimensional structure and, therefore, the same mechanism of enzymatic action as pancreatic chymotrypsin, trypsin, and elastase. The presence of the conserved amino-terminal activation peptide sequence (IVGG) shows that enterokinase must have a zymogen precursor and that the two-chain enzyme arises from limited proteolysis during posttranslational processing.  相似文献   

12.
13.
The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.  相似文献   

14.
15.
Reaction of purified bovine heart transhydrogenase with bifunctional cross-linking reagents dimethyl adipimidate, dimethyl pimelimidate, dimethyl suberimidate, and dithiobis(succinimidyl propionate) results in the appearance of a dimer band on sodium dodecyl sulfate polyacrylamide gels with no higher oligomers formed. Treatment of the enzyme with 6 M urea led to inactivation and prevented cross-linking by dimethyl suberimidate. Transhydrogenase reconstituted into phosphatidylcholine proteoliposomes also yielded a dimer band on cross-linking. These data indicate that soluble and functionally reconstituted transhydrogenase possesses a dimeric structure.  相似文献   

16.
Succinate dehydrogenase consists of two unequal subunits; Fp and Ip. An FAD group is covalently linked to a histidyl residue in the Fp subunit. The mechanism by which flavin is attached to protein is not known. Covalently bound flavin was studied in wild-type and succinate-dehydrogenase-negative Bacillus subtilis. The Fp subunit of succinate dehydrogenase was found to be the only (major) flavinylated protein in the cell. Mutants lacking covalently bound flavin and still containing the Fp polypeptide are described. It is shown that the flavin is not essential for assembly and membrane binding of succinate dehydrogenase in B. subtilis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号