首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chronic administration of sulpiride on serum human growth hormone (hGH), prolactin and thyroid stimulating hormone (TSH) was examined in 6 normal subjects. Sulpiride was given orally at a dose of 300 mg (t.i.d.) for 30 days. Sulpiride raised serum prolactin levels in all subjects examined. In addition, sulpiride suppressed hGH release induced by L-dopa, although the basal hGH level was not changed. Sulpiride treatment appeared to antagonize partially the inhibitory effect of L-dopa on prolactin release. Following thyrotropin-releasing hormone (TRH) injection, the percent increment in prolactin levels from the baseline in sulpiride-treated subjects was less than in controls without sulpiride. In contrast, both the basal and TRH-stimulated TSH levels were not influenced by sulpiride. These observations suggest that sulpiride suppresses L-dopa-induced hGH release and stimulates prolactin release, presumably by acting against the dopaminergic mechanism either on the hypothalamus or on the pituitary. The decreased prolactin response to TRH after sulpiride treatment may indicate a diminished reserve capacity in pituitary prolactin release.  相似文献   

2.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

3.
The pattern of TSH secretion in man in pulsatile in addition to the well known circadian variation. The mechanism triggering TSH pulses remains unclear to date. Infusions of somatostatin or dopamine rapidly lowering basal TSH levels without suppressing the pulsatile pattern suggest that an episodic disinhibition exerted by a physiological inhibitor is not a likely cause. On the same basis, thyroid hormones do not appear to be candidates, since they similarly inhibit basal TSH levels after a time lag of several hours but again do not suppress pulsatile release of the hormone. In contrast, bolus injections of dexamethasone completely abolish pulsatile release of TSH for several hours despite a normal sensitivity of the pituitary to exogenous TRH, suggesting a hypothalamic action of the drug. The hypothesis that pulsatile TSH release might be governed by a pulsatile mode of a hypothalamic stimulator is supported by the observation that an infusion of nifedipine, a calcium channel blocker, which in vitro selectively inhibits the TRH effect on TSH but not prolactin secretion, exerts a comparable effect when it is infused in vivo.  相似文献   

4.
It is known that opioids stimulate prolactin (PRL) secretion by an action on hypothalamic neurons, but in vitro studies have suggested a direct action on the lactotrophs. The present study was performed on male rats known to have little or no PRL response to TRH. A beta-endorphin (beta EP) injection in the third ventricle stimulated PRL secretion and induced furthermore a PRL secretory reaction to TRH injected intravenously 20 min later. Pretreatment with naloxone 10 min before beta EP injection abolished not only the PRL response to beta EP but also the conjugated effect of beta EP and TRH. Pretreatment with naloxone methyl bromide (Br-naloxone), a quaternary naloxone derivative, which does not cross the blood-brain barrier, had no effect on the PRL response to beta EP but prevented the conjugated effect of beta EP and TRH on PRL secretion. Pretreatment of the animals with -methyl-parathyrosine resulting in a dopamine depletion or with haloperidol, a dopamine antagonist, could not induce lactotroph responsiveness to TRH. These results suggest that beta EP in male rat sensitizes the PRL cell to TRH by a direct effect and not through an inhibition of the dopaminergic tone.  相似文献   

5.
6.
This study was conducted to assess the influence of dopamine on thyrotropin secretion in patients with primary hypothyroidism before and after optimized L-thyroxin replacement therapy. Thyrotropin responses to dopamine infusion (4 microg/kg/min over 3 hours) and IV metoclopramide (10 mg bolus), a dopamine receptor blocker were studied in 25 consecutive patients with primary hypothyroidism before and after achieving stable euthyroid state and compared with 15 normal age-matched controls. Thyrotropin response to both dopamine infusion (decremental) and IV metoclopramide bolus (incremental) was greater in patients with primary hypothyroidism than that in the control subjects. Thyrotropin response was greater in women than in men. The magnitude of decremental thyrotropin response to dopamine infusion and the incremental response to IV metoclopramide bolus significantly correlated with the basal T3 and T4 levels. Thyrotropin response was blunted to dopamine infusion but not to metoclopramide at follow-up after six-month replacement with L-thyroxin, and both the responses were comparable in women and men in patient group. We conclude that modulation of dopaminergic system by dopamine or by dopamine receptor blocker has a greater influence on thyrotropin secretion in patients with primary hypothyroidism than euthyroid normal subjects.  相似文献   

7.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

8.
To investigate the hypothesis of an altered hypothalamic dopaminergic activity in primary hypothyroidism, eight patients with hypothyroidism and seven normal subjects, all female, were studied. All of them were submitted to two tests: TRH stimulation and after the administration of dopamine receptor-blocking drug, Domperidone. The hypothyroid patients with basal TSH values less than or equal to 60 mU/L (4 cases--group 1) had lower PRL levels than the remaining 4 subjects with TSH greater than 60 mU/L (group 2) (p less than 0.001), despite all patients presenting the PRL levels within the normal range. A significant increase occurred for both TSH and PRL after the administration of TRH and Domperidone in normal as well as in the hypothyroid subjects, except for TSH in group 1 after the administration of Domperidone. The area under the curve for PRL response to THR was not different between the normal subjects and both hypothyroid groups, while that under the curve for TSH was greater in the hypothyroidism as a whole than in the normal subjects (p = 0.006) and between the hypothyroid groups, being greater in group 2 than in 1 (p less than 0.009). In relation to Domperidone, the area under the curve for TSH was significantly higher in group 2 when compared to the normal controls (p less than 0.001), while for PRL it was not different between hypothyroid groups in relation to normal controls and when groups I and II were compared. These results suggest that the hypothalamic dopamine activity is not altered in primary hypothyroidism and favor the small relevance of dopamine on the control of TSH secretion.  相似文献   

9.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

10.
Effects of VIP, TRH, dopamine and GABA on the secretion of prolactin (PRL) from rat pituitary cells were studied in vitro with a sensitive superfusion method. Dispersed anterior pituitary cells were placed on a Sephadex G-25 column and continuously eluted with KRBG buffer. Infusion of TRH (10(-11) - 10(-8)M) and VIP (10(-9) - 10(-6)M) resulted in a dose-related increase in PRL release. LHRH (10(-8) - 10(-5)M) had no effect on PRL release. On the other hand, infusion of dopamine (10(-9) - 10(-6)M) and GABA (10(-8) - 10(-4)M) suppressed not only the basal PRL release from dispersed pituitary cells but also the PRL response to TRH and VIP. The potency of TRH to stimulate PRL release is greater than that of VIP, and the potency of dopamine to inhibit PRL secretion is stronger than that of GABA on a molar basis. These results indicate that TRH and VIP have a stimulating role whereas dopamine and GABA have an inhibitory role in the regulation of PRL secretion at the pituitary level in the rat.  相似文献   

11.
Jean H. Dussault 《CMAJ》1974,111(11):1195-1197
Serum thyrotropin (TSH) and prolactin levels were measured after intravenous administration of 400 μg of synthetic thyrotropin-releasing hormone (TRH) in 13 normal subjects and six hypothyroid patients before and after three days of administration of dexamethasone 2 mg per day. In the normal subjects dexamethasone suppressed baseline serum levels and secretion of TSH after TRH stimulation. On the other hand, it had no effect on the hypothyroid patients. In the control group dexamethasone also suppressed baseline serum levels but not secretion of prolactin after TRH stimulation. Dexamethasone had no effect on prolactin levels in the hypothyroid group. It is concluded that in normal patients short-term administration of dexamethasone has an inhibitory effect on TSH secretion at the pituitary level. As for prolactin, our results could indicate that TRH is a more potent stimulator of prolactin secretion than of TSH secretion, or that TSH and prolactin pituitary thresholds for TRH are different.  相似文献   

12.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

13.
To study whether central dopaminergic activity influences TSH responsiveness to TRH in normal individuals and in patients with hyperthyroidism, three experiments (A, B and C) were carried out in 8 normal subjects, and two experiments (A and B) in 8 patients with untreated thyrotoxicosis. In experiment A oral placebo (PBO) preceded iv administration of 200 micrograms TRH by 90 min. In experiment B dopamine receptor blockade with 15 mg oral metoclopramide (MET) was given 90 min before iv administration of 200 micrograms TRH. In experiment C two oral doses (each dose 2.5 mg) of bromocriptine (BCT), known for dopamine agonistic properties, were given 9 and 1 hour before ingestion of 15 mg MET which, in turn, preceded iv injection of 200 micrograms TRH by 90 min. In the healthy subjects experiment A revealed a TSH responsiveness, as reflected by the TSH incremental area, which was 430 +/- 74. The corresponding TSH responsiveness was significantly larger in experiment B (661 +/- 138; P less than 0.02). In experiment C the TSH incremental area (332 +/- 102) did not differ significantly from the one obtained in experiment A. The thyrotrophs responded quite different to TRH in the group of thyrotoxic patients, where the TSH incremental area was zero regardless of whether PBO or MET were given as oral pretreatments. These results imply that central dopaminergic activity inhibits the pituitary thyrotrophs and modulates the TSH response to TRH in healthy subjects, but does not contribute significantly to the blocked TSH responsiveness in patients with untreated hyperthyroidism.  相似文献   

14.
We undertook this study, because conflicting data were reported about the dopaminergic regulation of prolactin (PRL) secretion in patients with acromegaly and hyperprolactinemia. In order to clarify the dopaminergic regulation of PRL secretion in patients with acromegaly and hyperprolactinemia, the effects of nomifensine, a central dopamine agonist, FK 33-824, a centrally antidopaminergically acting agent, and domperidone, a peripheral dopamine antagonist, on plasma PRL in these patients were studied. The results were compared with those observed in normal subjects and hyperprolactinemic patients, with or without a pituitary tumor. Nomifensine did not lower the PRL levels and FK 33-824 did not raise the PRL levels in acromegalic patients. In hyperprolactinemic patients, nomifensine did not lower the PRL levels and FK 33-824 failed to raise the PRL levels. Domperidone did not increase PRL in about a third of acromegalic patients, while TRH increased PRL in the all normoprolactinemic acromegalic patients. These results suggest that in acromegalic patients there may be a disturbance in dopamine related neurotransmission and that such disorders also seem to be present in patients with hyperprolactinemia, with or without a pituitary tumor.  相似文献   

15.
In our previous study, we observed a tendency towards an age-related increase in the serum thyrotropin (TSH) concentration. Regulatory mechanisms of TSH secretion in elderly subjects were studied. In 43 elderly subjects, serum TSH did not correlate significantly with serum T4, T3 free T4 or rT3. Further, those with increased TSH (greater than 5 mU/l, 9 subjects) did not overlap with those with low T3 (less than 0.92 nmol/1, 8 subjects). Increases in serum TSH were not associated with the presence of circulating anti-thyroid autoantibodies. A TRH test using a 500 micrograms single bolus injection was performed in 15 subjects. TSH response (basal: 1.92 +/- 1.42 (s.d.) mU/1, peak: 11.25 +/- 5.33 mU/1, sigma: 26.74 +/- 12.89 mU/1, respectively) did not differ significantly from that of younger subjects. T3 response after TRH varied greatly and a close correlation was observed between basal T3 and peak T3 (r = 0.86), and also between peak T3 and delta T3 (r = 0.81). A significant correlation was observed between sigma TSH and basal T3 (r = 0.60). Neither plasma cortisol, epinephrine nor norepinephrine concentrations showed any significant correlation with basal and TRH-stimulated TSH or T3 concentrations. However, the plasma dopamine concentration correlated significantly with sigma TSH (r = 0.60) and basal T3 (r = 0.52), respectively. In conclusion, the increase in serum TSH observed in elderly subjects was felt to represent a physiological adaptation to maintain serum T3. Low T3 subjects appear to have a disturbance in this mechanism, with decreased TSH and T3 response to TRH stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
It was shown that somatostatin (SRIF) inhibited cAMP-dependent vasoactive intestinal peptide (VIP)-stimulated prolactin (PRL) release by a GH3 clonal strain of rat pituitary tumor cells and decreased basal PRL secretion and inhibited PRL release in response to thyrotropin releasing hormone (TRH) whose action was independent of prior synthesis of cAMP. Pretreatment of these cells with pertussis toxin prevented SRIF's inhibitory effects on basal and TRH-stimulated hormone secretion as well as its VIP-stimulated responses. The blockade of SRIF's inhibitory effect on the actions of TRH or VIP was dependent on both the duration of preincubation and concentration of the toxin and was correlated with the ability of the toxin to catalyze the ADP-ribosylation of the 39,000-Da membrane protein. It is likely that this pertussis toxin substrate is involved in signal transduction of SRIF on cAMP-dependent actions of VIP and cAMP-independent action of TRH. However, the mechanism of SRIF's action on TRH is not clear, since SRIF did not affect the intracellular responses by TRH, neither intracellular Ca2+ mobilization nor the increase of 1,2-diacylglycerol formation following the breakdown of polyphosphoinositides.  相似文献   

17.
We have studied the effect of two inhibitors of prostaglandin synthesis on the basal and TRH-stimulated plasma TSH levels in the rat. Animals were injected sc daily with indomethacin 3 mg/0.5 ml) or aspirin (16--30 mg/0.5 ml) for 3 days. The plasma T4 and T3 were consistently lower in the indomethacin or aspirin groups than in the controls, while the basal TSH levels did not change. Indomethacin treatment significantly potentiated the TSH response to synthetic TRH (20 ng. iv) in intact and thyroidectomized rats. The pituitary TSH content was markedly increased by indomethacin, while hypothalamic TRH content did not change. In contrast, aspirin inhibited the TSH response to TRH in intact rats, when pituitary TSH content decreased significantly. No potentiation by aspirin of TRH-stimulated TSH response in the thyroidectomized rats was observed. The increased sensitivity of plasma TSH response to exogenous TRH in the indomethacin group is presumably due to higher pituitary TSH content than in the controls. The action of indomethacin appears to be mediated, at least in part, at the pituitary level. In addition, there is a dissociation between the action of indomethacin and the action of aspirin in the TSH response to TRH.  相似文献   

18.
The hypothalamus-pituitary-thyroid function was studied in 15 male patients on chronic methadone treatment (40 mg/day). No significant variations of TSH, T4, T3 and rT3 levels were documented, either in basal conditions or after TRH stimulation; however a reduced TSH pituitary response was recorded in some patients (6 out of 15).  相似文献   

19.
Five different ultrasensitive thyrotropin (TSH) assay kits (Boots-Celltech, Immunotech, ORIS-CIS, Travenol and Boehringer) have been used for TSH measurements in various conditions. All the kits were based on an immunometric method but differed with regard to components and procedure. The sensitivity appeared essentially the same for the five kits (0.10 microU/ml) as well as the intraassay precision (coefficient of variation less than 12%). In contrast, the interassay coefficients of variation in the low TSH range varied from 12.8 to 21.3%. Discrepancies from kit to kit were observed and accounted for by differences in the components and procedure of the kits. Basal serum TSH was determined in normal subjects (n = 261) and in patients with thyroid dysfunction (n = 392). No overlap was shown between normals and patients with overt hypothyroidism. In contrast, an overlap existed between normals and hyperthyroids for all the kits but one. Measurements in patients with nontoxic goiter showed that TSH may be undetectable in clinically euthyroid patients, whatever the kit used. After TRH stimulation, 95% of the 375 patients tested associated either an absence of response to TRH with undetectable basal TSH values, or a blunted response with low basal TSH levels or normal response with normal basal TSH concentrations. However, 9 patients with suppressed TSH showed a response to TRH and 7 patients with normal basal TSH levels presented an exaggerated response to TRH. Taken together, these results demonstrate that even though ultrasensitive measurements of TSH do not meet the expectation of completely discriminating euthyroid from hyperthyroid patients, ultrasensitive TSH assay kits represent a powerful tool in the diagnosis of thyroid dysfunction, which would eliminate, in most instances, the need for TRH test and diminish thyroid hormone assay requests.  相似文献   

20.
To determine if age-related changes in glycoprotein pituitary hormone secretion are associated with alterations in dopaminergic regulation, plasma gonadotropins and TSH were measured before and after L-dopa administration in 44 young (31-44 years of age) and 42 old (64-88 years of age) healthy male participants. Plasma GH and PRL were also determined in order to examine the somatotroph and lactotrope response. In the young, following L-dopa, plasma FSH, LH and TSH were unchanged from baseline. However, in older subjects, plasma FSH was significantly increased (p less than 0.001) and a similar trend was noted for LH. Plasma TSH was significantly depressed (p less than 0.002) in older subjects only. Following L-dopa, increases in plasma GH and decreases in plasma PRL were of similar magnitude in each group. These data indicate that dopaminergic modulation of gonadotropins and TSH is altered with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号