首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
New data were obtained for the Solanum brevidens Fill. nucleotide sequences coding for polygalacturonase inhibitor proteins (PGIPs), which are involved in plant defense against phytopathogenic fungi. Highly degenerate primers directed to the conserved regions of the known PGIP genes of tomato, kiwi, apple, carrot, and grape were used to clone four pgip genes and one pseudogene from the genome of S. brevidens, a species that is closely related to cultivated potato, forms no tubers, is highly resistant to phytopathogens, and is often employed in potato breeding. The sequenced part of the coding region of the new genes is 924 bp and codes for a protein of 308 amino acid residues (without the leader peptide). The genes were designated as pgipSbr1(1), pgipSbr1 (2). pgipSbr2, pgipSbr3, and pgipSbr4. The amino acid sequences of the S. brevidens PGIPs have 90.9-99.4% identity to each other and 94% identity to PGIP of Lycopersicon esculentum Mill., another member of the family Solanaceae. The amino acid residues differing between S. brevidens PGIPs were assumed to determine the selectivity of interactions with particular polyglucuronases of phytopathogenic fungi.  相似文献   

4.
Numerous disease resistance gene-like DNA sequences were cloned from an intergeneric hybrid of Poncirus and Citrus, using a PCR approach with degenerate primers designed from conserved NBS (nucleotide-binding site) motifs found in a number of plant resistance genes. Most of the cloned genomic sequences could be translated into polypeptides without stop codons, and the sequences contained the characteristic motifs found in the NBS-LRR class of plant disease resistance genes. Pairwise comparisons of these polypeptide sequences indicated that they shared various degrees of amino-acid identity and could be grouped into ten classes (RGC1–RGC10). When the sequences of each class were compared with known resistance-gene sequences, the percentage of amino-acid identity ranged from 18.6% to 48%. To facilitate genetic mapping of these sequences and to assess their potential linkage relationship with disease resistance genes in Poncirus, we developed CAPS markers by designing specific primers based on the cloned DNA sequences and subsequently identifying restriction enzymes that revealed genetic polymorphisms. Three of the amplified DNA fragment markers (designated as 18P33a, Pt9a, and Pt8a) were associated with the citrus tristeza virus resistance gene (Ctv), and one fragment (Pt8a) was associated with the major gene responsible for the citrus nematode resistance (Tyr1); both genes are from Poncirus and of importance to citrus survival and production. These polymorphic fragments were located on two local genetic linkage maps of the chromosome region from Ctv to Tyr1. These results indicate that resistance-gene candidate sequences amplified with the NBS-derived degenerate primers are valuable sources for developing markers in disease resistance-gene tagging, mapping, and cloning. Received: 25 October 1999 / Accepted: 27 March 2000  相似文献   

5.
Buchnera aphidicola, the endosymbiont of the aphid Schizaphis graminum, contains the gene ftsZ, which codes for a protein involved in the initiation of septum formation during cell division. With immunological techniques, this protein has been detected in cell-free extracts of the endosymbiont. Nucleotide sequence determination of a 6.4-kilobase B. aphidicola DNA fragment has indicated that, as in E. coli, ftsZ is adjacent to genes coding for other cell division proteins as well as genes involved in murein synthesis (murC–ddlB–ftsA–ftsZ). Although B. aphidicola ftsZ is expressed in E. coli, it cannot complement E. coli ftsZ mutants. High levels of B. aphidicola FtsZ results in the formation of long filamentous E. coli cells, suggesting that this protein interferes with cell division. The presence of FtsZ indicates that in this, as well as in many other previously described properties, B. aphidicola resembles free-living bacteria. Received: 22 July 1997 / Accepted: 28 July 1997  相似文献   

6.
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. A number of PGIPs have been characterized from dicot species, whereas only a few data are available from monocots. Database searches and genome-specific cloning strategies allowed the identification of four rice (Oryza sativa L.) and two wheat (Triticum aestivum L.) Pgip genes. The rice Pgip genes (Ospgip1, Ospgip2, Ospgip3 and Ospgip4) are distributed over a 30 kbp region of the short arm of chromosome 5, whereas the wheat Pgip genes, Tapgip1 and Tapgip2, are localized on the short arm of chromosome 7B and 7D, respectively. Deduced amino acid sequences show the typical LRR modular organization and a conserved distribution of the eight cysteines at the N- and C-terminal regions. Sequence comparison suggests that monocot and dicot PGIPs form two separate clusters sharing about 40% identity and shows that this value is close to the extent of variability observed within each cluster. Gene-specific RT-PCR and biochemical analyses demonstrate that both Ospgips and Tapgips are expressed in the whole plant or in a tissue-specific manner, and that OsPGIP1, lacking an entire LRR repeat, is an active inhibitor of fungal polygalacturonases. This last finding can contribute to define the molecular features of PG–PGIP interactions and highlights that the genetic events that can generate variability at the Pgip locus are not only limited to substitutions or small insertions/deletions, as so far reported, but can also involve variation in the number of LRRs.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

7.
8.
The recombinant Bordetella pertussis CyaA pore-forming (CyaA-PF) fragment was previously shown to be expressed separately in Escherichia coli as a soluble precursor that can be in vivo palmitoylated to exert haemolytic activity. In this study, PCR-based mutagenesis was employed to investigate the contributions to haemolysis of five predicted helices within the N-terminal hydrophobic region of the CyaA-PF fragment. Single proline substitutions were made for alanine near the centre of each predicted helix as a means of disrupting local secondary structure. All mutant proteins were over-expressed in E. coli as a 126-kDa soluble protein at levels comparable to the wild-type. Marked reductions in haemolytic activity against sheep erythrocytes of mutants, A510P, A538P, A583P and A687P pertaining to the putative helices 1500–522, 2529–550, 3571–593 and 5678–698, respectively, were observed. However, a slight decrease in haemolytic activity was found for the proline replacement in the predicted helix 4602–627 (A616P). MALDI–TOF–MS and LC–MS–MS analyses verified the palmitoylation at Lys983 of all five mutants as identical to that of the CyaA-PF wild-type protein, indicating that toxin modification via this acylation was not affected by the mutations. Altogether, these results suggest that structural integrity of the predicted helices 1, 2, 3 and 5, but not helix 4, is important for haemolytic activity, particularly for the putative transmembrane helices 2 and 3 that might conceivably be involved in pore formation of the CyaA-PF fragment.  相似文献   

9.
Bacillus thuringiensis (Bt) Berliner is a promising agent for microbial control of agriculturally and medically important insects. This study aimed at searching for Bt strains encoding Cry proteins that act more efficiently against fall armyworm. Thirty Bt strains were isolated from soil samples in Pernambuco State and evaluated through bioassays. Among these, strain I4A7 was the most efficient against the fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), and thus it was characterized by biochemical sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and molecular (polymerase chain reaction (PCR) and sequencing reaction) methods. The protein pattern of this strain on a SDS–PAGE was similar to that of B. thuringiensis israelensis (Bti). Moreover, I4A7 cry DNA sequence showed high identity (99–100%) to genes cry4Aa, 4Ba, 10Aa, 11Aa, cyt1Aa and cyt2B from Bti. The toxicity of the newly isolated Bti-like strain upon S. frugiperda should be considered as this strain might be used in combination with other Bt strains, such as B. thuringiensis var. kurstaki (Btk). Handling Editor: Helen Roy.  相似文献   

10.
Consensus amino acid sequences of FADH2-dependent bacterial halogenases were used to design PCR primers amplifying a halogenase gene fragment from the chloramphenicol producer Streptomyces venezuelae ISP5230. The sequence-specific degenerate primers (MPF1 and MPR2) were used with a touchdown PCR procedure in the first PCR-assisted cloning of a halogenase gene fragment. In the region of the 290-bp PCR product containing the reverse primer, the deduced amino acid sequence exhibited characteristics of a β–α–β fold present in FAD-binding sites of certain monooxygenases. When used to probe Southern blots of restriction-enzyme-digested DNA, the [α-32P]dCTP-labeled PCR product hybridized specifically with DNA fragments from genomic DNA of S. venezuelae ISP5230. Primers MPF1 and MPR2 also allowed amplification by PCR of approximately 290-bp DNA fragments from several other streptomycetes. The fragments from Streptomyces aureofaciens NRRL2209 and Streptomyces coelicolor A3(2) showed sequence identity with halogenase genes from these species. Thus, the PCR primers are of potential value for amplification and subsequent isolation of actinomycete halogenase genes. Journal of Industrial Microbiology & Biotechnology (2002) 29, 1–5 doi:10.1038/sj.jim.7000263 Received 25 June 2001/ Accepted in revised form 02 April 2002  相似文献   

11.
Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGIP-encoding gene from Vitis vinifera (Vvpgip1) was isolated and characterised. PGIP purified from grapevine was shown to inhibit crude polygalacturonase extracts from Botrytis cinerea, but this inhibitory activity has not yet been linked conclusively to the activity of the Vvpgip1 gene product. Here we use a transgenic over-expression approach to show that the PGIP encoded by the Vvpgip1 gene is active against PGs of B. cinerea and that over-expression of this gene in transgenic tobacco confers a reduced susceptibility to infection by this pathogen. A calculated reduction in disease susceptibility of 47–69% was observed for a homogeneous group of transgenic lines that was statistically clearly separated from untransformed control plants following infection with Botrytis over a 15-day-period. VvPGIP1 was subsequently purified from transgenic tobacco and used to study the specific inhibition profile of individual PGs from Botrytis and Aspergillus. The heterologously expressed and purified VvPGIP1 selectively inhibited PGs from both A. niger and B.␣cinerea, including BcPG1, a PG from B. cinerea that has previously been shown to be essential for virulence and symptom development. Altogether our data confirm the antifungal nature of the VvPGIP1, and the in vitro inhibition data suggest at least in part, that the VvPGIP1 contributed to the observed reduction in disease symptoms by inhibiting the macerating action of certain Botrytis PGs in planta. The ability to correlate inhibition profiles to individual PGs provides a more comprehensive analysis of PGIPs as antifungal genes with biotechnological potential, and adds to our understanding of the importance of PGIP:PG interactions during disease and symptom development in plants.Dirk A. Joubert and Ana R. Slaughter contributed equally to this work.  相似文献   

12.
The introduction of several kinds of genes into the yeast chromosome is a powerful tool in many fields from fundamental study to industrial application. Here, we describe a general strategy for one-step gene integration and a marker recycling method. Forty base pairs of a short sequence derived from a region adjacent to the HIS3 locus were placed between cell surface displaying β-glucosidase (BGL) and URA3 marker genes. HIS3 deletion and BGL–URA3 fragment integration were achieved via a PCR fragment consisting of the BGL–URA3 fragment attached to homology sequences flanked by the HIS3 targeting locus. The obtained his3::URA3 disruptants were plated on a 5-FOA plate to select for the URA3 deletion due to repeated sequences at both sides of URA3 gene. In all selected colonies, BGL genes were integrated at the targeted HIS3 locus and URA3 was completely deleted. In addition, introduced BGL was efficiently expressed, and the transformants fermented cellobiose to ethanol effectively. As our strategy creates next transformation markers continuously together with gene integration, this method can serve as a simple and powerful tool for multiple genetic manipulations in yeast engineering.  相似文献   

13.
Toll and interleukin-1 receptor (TIR) and nonTIR nucleotide binding site–leucine rich repeat (NBS–LRR) resistance gene analogues (RGAs) were obtained from chestnut rose (Rosa roxburghii Tratt) by two PCR-based amplification strategies (direct amplification and overlap extension amplification) with degenerate primers designed to the conserved P-loop, kinase-2, and Gly-Leu-Pro-Leu (GLPL) motifs within the NBS domain of plant resistance gene (R gene) products. Thirty-four of 65 cloned PCR fragments contained a continuous open reading frame (ORF) and their predicted protein products showed homology to the NBS–LRR class R proteins in the GenBank database. These 34 predicted protein sequences exhibited a wide range (19.5–99.4%) of sequence identity among them and were classified into two distinct groups by phylogenetic analysis. The first group consisted of 23 sequences and seemed to belong to the nonTIR NBS–LRR RGAs, since they contained group specific motifs (RNBS-A-nonTIR motif) that are often present in the coiled-coil domain of the nonTIR NBS–LRR class R genes. The second group comprised 11 sequences that contained motifs found in the TIR domain of TIR NBS–LRR class R genes. Restriction fragment length polymorphic (RFLP) markers were developed from some of the RGAs and used for mapping powdery mildew resistance genes in chestnut rose. Three markers, RGA22C, RGA4A, and RGA7B, were identified to be linked to a resistance gene locus, designated CRPM1 for chestnut rose powdery mildew resistance 1, which accounted for 72% of the variation in powdery mildew resistance phenotype in an F1 segregating population. To our knowledge, this is the first report on isolation, phylogenetic analysis and potential utilization as genetic markers of RGAs in chestnut rose.  相似文献   

14.
15.
A number of polyketide synthase gene sequences fromAspergillus ochraceus were isolated by both SSH-PCR and degenerate PCR. The deduced amino acid sequences of the corresponding clonedpks DNA fragments were then aligned with the amino acid sequences of other polyketide synthase enzymes. One of thesepks genes is essential for ochratoxin A biosynthesis (OTA-PKS). The OTA-PKS was most similar to methylsalicylic acid synthase (MSAS) type PKS proteins based on the alignment of the ketosynthase domains while if the acyl transferase domains were aligned it appeared to be more similar to PKS enzymes fromCochliobolus heterostrophus. The three PKS proteins identified by degenerate PCR were all from different PKS types, one was a MSAS type enzyme, the second was similar to the PKS proteins involved in lovastatin biosynthesis while the third was not similar to any of the other phylogenetic groupings. Data is presented which suggests that the use of phylogenetic analysis to predict the function of PKS proteins/genes is likely to be significantly enhanced by analyzing more than one domain of the protein. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005 Financial support: Irish Government under the National Development Plan 2000–2006  相似文献   

16.
New data were obtained for the Solanum brevidens Fill. nucleotide sequences coding for polygalacturonase inhibitor proteins (PGIPs), which are involved in plant defense against phytopathogenic fungi. Highly degenerate primers directed to the conserved regions of the known PGIP genes of tomato, kiwi, apple, carrot, and grape were used to clone four pgip genes and one pseudogene from the genome of S. brevidens, a species that is closely related to cultivated potato, forms no tubers, is highly resistant to phytopathogens, and is often employed in potato breeding. The sequenced part of the coding region of the new genes is 924 bp and codes for a protein of 308 amino acid residues (without the leader peptide). The genes were designated as pgipSbr1(1), pgipSbr1(2), pgipSbr2, pgipSbr3, and pgipSbr4. The amino acid sequences of the S. brevidens PGIPs have 90.9–99.4% identity to each other and 94% identity to PGIP of Lycopersicon esculentum Mill., another member of the family Solanaceae. The amino acid residues differing between S. brevidens PGIPs were assumed to determine the selectivity of interactions with particular polyglucuronases of phytopathogenic fungi.  相似文献   

17.
The nucleotide sequences of three independent fragments (designated no. 3, 4, and 9; each 15–20 kb in size) of the genome of alkaliphilic Bacillus sp. C-125 cloned in a λ phage vector have been determined. Thirteen putative open reading frames (ORFs) were identified in sequenced fragment no. 3 and 11 ORFs were identified in no. 4. Twenty ORFs were also identified in fragment no. 9. All putative ORFs were analyzed in comparison with the BSORF database and non-redundant protein databases. The functions of 5 ORFs in fragment no. 3 and 3 ORFs in fragment no. 4 were suggested by their significant similarities to known proteins in the database. Among the 20 ORFs in fragment no. 9, the functions of 11 ORFs were similarly suggested. Most of the annotated ORFs in the DNA fragments of the genome of alkaliphilic Bacillus sp. C-125 were conserved in the Bacillus subtilis genome. The organization of ORFs in the genome of strain C-125 was found to differ from the order of genes in the chromosome of B. subtilis, although some gene clusters (ydh, yqi, yer, and yts) were conserved as operon units the same as in B. subtilis. Received: April 17, 1998 / Accepted: June 23, 1998  相似文献   

18.
Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering.  相似文献   

19.
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant‐based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG‐inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect–plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild‐type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP‐deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.  相似文献   

20.
Taurine is known to function as a protectant against various stresses in animal cells. In order to utilize taurine as a compatible solute for stress tolerance of yeast, isolation of cDNA clones for genes encoding enzymes involved in biosynthesis of taurine was attempted. Two types of cDNA clones corresponding to genes encoding cysteine dioxygenase (CDO1 and CDO2) and a cDNA clone for cysteine sulfinate decarboxylase (CSD) were isolated from Cyprinus carpio. Deduced amino acid sequences of the two CDOs and that of CSD showed high similarity to those of CDOs and those of CSDs from other organisms, respectively. The coding regions of CDO1, CDO2, and CSD were subcloned into an expression vector, pESC-TRP, for Saccharomyces cerevisiae. Furthermore, to enhance the efficiency of synthesis of taurine in S. cerevisiae, a CDOCSD fusion was designed and expressed. Expression of CDO and CSD proteins, or the CDO–CSD fusion protein was confirmed by Western blot analysis. HPLC analysis showed that the expression of the proteins led to enhancement of the accumulation level of hypotaurine, a precursor of taurine, rather than taurine. The yeast cells expressing corresponding genes showed tolerance to oxidative stress induced by menadione, but not to freezing–thawing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号