首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D D Focht  D B Searles    S C Koh 《Applied microbiology》1996,62(10):3910-3913
Pseudomonas aeruginosa JB2, a chlorobenzoate degrader, was inoculated into soil having indigenous biphenyl degraders but no identifiable 2-chlorobenzoate (2CBa) or 2,5-dichlorobenzoate (2,5DCBa) degraders. The absence of any indigenous chlorobenzoate degraders was noted by the failure to obtain enrichment cultures with the addition of 2CBa, 3CBa, or 2,5DCBa and by the failure of soil DNA to hybridize to the tfdC gene, which encodes ortho fission of chlorocatechols. In contrast, DNA extracted from inoculated soils hybridized to this probe. Bacteria able to utilize both biphenyl and 2CBa as growth substrates were absent in uninoculated soil, but their presence increased with time in the inoculated soils. This increase was related kinetically to the growth of biphenyl degraders. Pseudomonas sp. strain AW, a dominant biphenyl degrader, was selected as a possible parental strain. Eight of nine recombinant strains, chosen at random, had high phenotypic similarity (90% or more) to the inoculant; the other, strain JB2-M, had 78% similarity. Two hybrid strains, P. aeruginosa JB2-3 and Pseudomonas sp. JB2-M, were the most effective of all strains, including strain AW, in metabolizing polychlorinated biphenyls (Aroclor 1242). Repetitive extragenic palindromic-PCR analysis of putative parental strains JB2 and AW and the two recombinant strains JB2-3 and JB2-M showed similar fragments among the recombinants and JB2 but not AW. These results indicate that the bph genes were transferred to the chlorobenzoate-degrading inoculant from indigenous biphenyl degraders.  相似文献   

2.
Pseudomonas sp. strain UCR2 was isolated from a multi-chemostat mating experiment between a chlorobenzoate-degrader, Pseudomonas aeruginosa strain JB2, and a chlorobiphenyl-degrader, Arthrobacter sp. strain B1Barc. Strain UCR2 differed from either of the parental organisms in that it grew on both 2-chloro- and 2,5-dichlorobiphenyl with concomitant release of chloride. Phenotypic typing by the Biolog system indicated that strain UCR2 shared greater similarity with strain JB2 (88%) than strain B1Barc (3%). In DNA:DNA hybridization experiments, genomic DNA from strain UCR2 hybridized with both strain JB2 and strain B1Barc, with the former pairing yielding a much stronger signal than the latter. In contrast, no hybridization whatsoever was observed when the parental organisms strains JB2 and B1Barc were probed against each other.  相似文献   

3.
4.
Protein mass spectrometry and molecular cloning techniques were used to identify and characterize mobile o-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 and Pseudomonas huttiensis strain D1. Proteins induced in strains JB2 and D1 by growth on 2-chlorobenzoate (2-CBa) were extracted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Two bands gave significant matches to OhbB and OhbA, which have been reported to be the alpha and beta subunits, respectively, of an ortho-1,2-halobenzoate dioxygenase of P. aeruginosa strain 142 (T. V. Tsoi, E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje, Appl. Environ. Microbiol. 65:2151-2162, 1999). PCR and Southern hybridization experiments confirmed that ohbAB were present in strain JB2 and were transferred from strain JB2 to strain D1. While the sequences of ohbA from strains JB2, D1, and 142 were identical, the sequences of ohbB from strains JB2 and D1 were identical to each other but differed slightly from that of strain 142. PCR analyses and Southern hybridization analyses indicated that ohbAB were conserved in strains JB2 and D1 and in strain 142 but that the regions adjoining these genes were divergent. Expression of ohbAB in Escherichia coli resulted in conversion of o-chlorobenzoates to the corresponding (chloro)catechols with the following apparent affinity: 2-CBa approximately 2,5-dichlorobenzoate > 2,3,5-trichlorobenzoate > 2,4-dichlorobenzoate. The activity of OhbAB(JB2) appeared to differ from that reported for OhbAB(142) primarily in that a chlorine in the para position posed a greater impediment to catalysis with the former. Hybridization analysis of spontaneous 2-CBa(-) mutants of strains JB2 and D1 verified that ohbAB were lost along with the genes, suggesting that all of the genes may be contained in the same mobile element. Strains JB2 and 142 originated from California and Russia, respectively. Thus, ohbAB and/or the mobile element on which they are carried may have a global distribution.  相似文献   

5.
Protein mass spectrometry and molecular cloning techniques were used to identify and characterize mobile o-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 and Pseudomonas huttiensis strain D1. Proteins induced in strains JB2 and D1 by growth on 2-chlorobenzoate (2-CBa) were extracted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Two bands gave significant matches to OhbB and OhbA, which have been reported to be the α and β subunits, respectively, of an ortho-1,2-halobenzoate dioxygenase of P. aeruginosa strain 142 (T. V. Tsoi, E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje, Appl. Environ. Microbiol. 65:2151–2162, 1999). PCR and Southern hybridization experiments confirmed that ohbAB were present in strain JB2 and were transferred from strain JB2 to strain D1. While the sequences of ohbA from strains JB2, D1, and 142 were identical, the sequences of ohbB from strains JB2 and D1 were identical to each other but differed slightly from that of strain 142. PCR analyses and Southern hybridization analyses indicated that ohbAB were conserved in strains JB2 and D1 and in strain 142 but that the regions adjoining these genes were divergent. Expression of ohbAB in Escherichia coli resulted in conversion of o-chlorobenzoates to the corresponding (chloro)catechols with the following apparent affinity: 2-CBa ≈ 2,5-dichlorobenzoate > 2,3,5-trichlorobenzoate > 2,4-dichlorobenzoate. The activity of OhbABJB2 appeared to differ from that reported for OhbAB142 primarily in that a chlorine in the para position posed a greater impediment to catalysis with the former. Hybridization analysis of spontaneous 2-CBa mutants of strains JB2 and D1 verified that ohbAB were lost along with the genes, suggesting that all of the genes may be contained in the same mobile element. Strains JB2 and 142 originated from California and Russia, respectively. Thus, ohbAB and/or the mobile element on which they are carried may have a global distribution.  相似文献   

6.
7.
A new carbazole (CAR)-degrading bacterium, called strain OM1, was isolated from activated sludge obtained from sewage disposal plants in Fukuoka Prefecture, and it was identified as Pseudomonas stutzeri. Anthranilic acid (AN), 2'-aminobiphenyl-2,3-diol and its meta-cleavage product, 2-hydroxy-6-oxo-6-(2'-aminophenyl)-hexa-2,4-dienoic acid, were identified as metabolic intermediates of CAR in the ethyl acetate extract of the culture broth. Therefore, the CAR catabolic pathway to AN in strain OM1 was indicated to be identical to those found in the Pseudomonas sp. strains CA06 and CA10. The strain OM1 degraded catechol (CAT) via a meta-cleavage pathway in contrast to strains CA06 and CA10, which transform catechol into cis, cis-munonic acid. Clones containing a 6.9-kb EcoRI fragment and a 3-kb PstI-SphI fragment were isolated from colonies, forming a clear zone of CAR and a yellow ring-cleavage product from CAT, respectively. Recombinant E. coli carrying the 6.9-kb fragment degraded CAR in the L-broth and produced AN. Cell-free extract from the clone carrying a 3-kb PstI-SphI fragment had high meta-ring-cleavage dioxygenase activity for CAT. The nucleotide sequences of these fragments were determined. The 6.9-kb fragment showed a very high degree of homology with the CAR catabolic genes of strain CA10. The amino acid and nucleotide sequences of the 3-kb fragment were found to exhibit significant homology with the genes for the CAT-catabolic enzymes of TOL plasmid pWW0, plasmid NAH7, and plasmid pVI150.  相似文献   

8.
2-Hydroxy-6-oxo-6-(2(')-aminophenyl)-hexa-2,4-dienoate hydrolases (CarC enzymes) from two carbazole-degrading bacteria were purified using recombinant Escherichia coli strains with the histidine (His)-tagged purification system. The His-tagged CarC (ht-CarC) enzymes from Pseudomonas resinovorans strain CA10 (ht-CarC(CA10)) and Janthinobacterium sp. strain J3 (ht-CarC(J3)) exhibited hydrolase activity toward 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate as the purified native CarC(CA10) did. ht-CarC(J3) was crystallized in the space group I422 with cell dimensions of a=b=130.3A, c=84.5A in the hexagonal setting, and the crystal structure of ht-CarC(J3) was determined at 1.86A resolution. The final refined model of ht-CarC(J3) yields an R-factor of 21.6%, although the electron-density corresponding to Ile146 to Asn155 was ambiguous in the final model. We compared the known structures of BphD from Rhodococcus sp. strain RHA1 and CumD from Pseudomonas fluorescens strain IP01. The backbone conformation of ht-CarC(J3) was better superimposed with CumD than with BphD(RHA1). The side-chain directions of Arg185 and Trp262 residues in the substrate binding pockets of these enzymes were different among these proteins, suggesting that these residues may take a conformational change during the catalytic cycles.  相似文献   

9.
Bacterial atrazine catabolism is initiated by the enzyme atrazine chlorohydrolase (AtzA) in Pseudomonas sp. strain ADP. Other triazine herbicides are metabolized by bacteria, but the enzymological basis of this is unclear. Here we begin to address this by investigating the catalytic activity of AtzA by using substrate analogs. Purified AtzA from Pseudomonas sp. strain ADP catalyzed the hydrolysis of an atrazine analog that was substituted at the chlorine substituent by fluorine. AtzA did not catalyze the hydrolysis of atrazine analogs containing the pseudohalide azido, methoxy, and cyano groups or thiomethyl and amino groups. Atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, ranging in size from methyl to t-butyl, all underwent dechlorination by AtzA. AtzA catalyzed hydrolytic dechlorination when one nitrogen substituent was alkylated and the other was a free amino group. However, when both amino groups were unalkylated, no reaction occurred. Cell extracts were prepared from five strains capable of atrazine dechlorination and known to contain atzA or closely homologous gene sequences: Pseudomonas sp. strain ADP, Rhizobium strain PATR, Alcaligenes strain SG1, Agrobacterium radiobacter J14a, and Ralstonia picketti D. All showed identical substrate specificity to purified AtzA from Pseudomonas sp. strain ADP. Cell extracts from Clavibacter michiganensis ATZ1, which also contains a gene homologous to atzA, were able to transform atrazine analogs containing pseudohalide and thiomethyl groups, in addition to the substrates used by AtzA from Pseudomonas sp. strain ADP. This suggests that either (i) another enzyme(s) is present which confers the broader substrate range or (ii) the AtzA itself has a broader substrate range.  相似文献   

10.
Strains of Arthrobacter catalyze a hydrolytic dehalogenation of 4-chlorobenzoate (4-CBA) to p-hydroxybenzoate. The reaction requires ATP and coenzyme A (CoA), indicating activation of the substrate via a thioester, like that reported for Pseudomonas sp. strain CBS3 (J. D. Scholten, K.-H. Chang, P. C. Babbit, H. Charest, M. Sylvestre, and D. Dunaway-Mariano, Science 253:182-185, 1991). The dehalogenase genes of Arthrobacter sp. strain SU were cloned and expressed in Escherichia coli. Analyses of deletions indicate that dehalogenation depends on three open reading frames (ORFs) which are organized in an operon. There is extensive sequence homology to corresponding gene products in Pseudomonas sp. strain CBS3, suggesting that ORF1 and ORF2 encode a 4-CBA-CoA-ligase and a 4-CBA-CoA dehalogenase, respectively. ORF3 possibly represents a thioesterase, although no homology to the enzyme from Pseudomonas sp. strain CBS3 exists.  相似文献   

11.
Strains of Arthrobacter catalyze a hydrolytic dehalogenation of 4-chlorobenzoate (4-CBA) to p-hydroxybenzoate. The reaction requires ATP and coenzyme A (CoA), indicating activation of the substrate via a thioester, like that reported for Pseudomonas sp. strain CBS3 (J. D. Scholten, K.-H. Chang, P. C. Babbit, H. Charest, M. Sylvestre, and D. Dunaway-Mariano, Science 253:182-185, 1991). The dehalogenase genes of Arthrobacter sp. strain SU were cloned and expressed in Escherichia coli. Analyses of deletions indicate that dehalogenation depends on three open reading frames (ORFs) which are organized in an operon. There is extensive sequence homology to corresponding gene products in Pseudomonas sp. strain CBS3, suggesting that ORF1 and ORF2 encode a 4-CBA-CoA-ligase and a 4-CBA-CoA dehalogenase, respectively. ORF3 possibly represents a thioesterase, although no homology to the enzyme from Pseudomonas sp. strain CBS3 exists.  相似文献   

12.
Hybridization analysis showed that a newly isolated carbazole (CAR)-degrading bacterium Sphingomonas sp. strain KA1 did not possess the gene encoding the terminal oxygenase component (carAa) of CAR 1,9a-dioxygenase at high homology (more than 90% identity) to that of another CAR-degrader, Pseudomonas resinovorans strain CA10. However, PCR experiments using the primers for amplifying the internal fragment of the carAa gene (810 bp for strain CA10) showed that a PCR product of unexpected size (1100 bp) was amplified. Sequence analysis revealed that this DNA region contained the portion of two possible ORFs, which showed moderate homology to CarAa and CarBa from strain CA10 (61% and 40% identities at the amino acid level, respectively). Inoculation of strain KA1 into dioxin-contaminated model soil resulted in 96% and 70% degradation of 2-mono- and 2,3-dichlorinated dibenzo-p-dioxin, respectively, after 7-day incubation.  相似文献   

13.
To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of PHAMCL from waste vegetable oil. The proportion of 3- hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.  相似文献   

14.
Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m-2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment.  相似文献   

15.
Pseudomonas sp. S-47 expresses catechol 2,3-dioxygenase (C230) catalyzing the conversion of 4-chlorocatechol (4CC) as well as catechol to 5-chloro-2-hydroxymuconic semialdehyde and 2-hydroxymuconic semialdehyde, respectively, through meta-ring cleavage. The xylE gene encoding C230 for meta-cleavage was cloned from strain S-47 and its nucleotide sequence was analyzed. The pRES101 containing the xylE gene exhibited high C230 activity toward catechol and 4CC without altering the substrate specificity from natural strain. The xylE gene was composed of 924 bp and encoded polypeptide of molecular mass 35 kDa containing 307 amino acids. A deduced amino acid sequence of the C230 from strain S-47 exhibited over 80% identity with those of Pseudomonas putida mt-2, Pseudomonas putida G7, and Pseudomonas sp. CF600. However, it shows below 45% identity with those of Pseudomonas cepacia LB400 and Pseudomonas sp. KKS102. The C230 of strain S-47 was conserved in the amino acids (His150, His214, Glu261) for metal binding ligands and those (His199, His242, and Tyr251) for catalytic sites. Therefore, Pseudomonas sp. S-47 can be explained as acting by degrading catechol as well as 4CC by xylE-encoding C230 which was fused by N domain of nahH and C domain of dmpB from other Pseudomonas strains.  相似文献   

16.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A Spirillum sp. and a Pseudomonas sp. possessing crossing substrate saturation curves for L-lactate were isolated from fresh water by chemostat enrichment. Their Ks and mumax values for L-lactate were: Spirillum sp., 23 micrometer and 0.35 h-1, respectively; Pseudomonas sp., 91 micrometer and 0.64 h-1, respectively. Under L-lactate limitation, pseudomonas sp. outgrew Spirillum s. at dilution rates (D) above 0.29 h-1, but the converse occurred at lower D values. The advantage of Spirillum sp. increased with decreasing D until, at D = 0.05 h-1 (i.e. L-lactate concentration of approximately 1 micrometer), Pseudomonas sp. was eliminated from the culture essentially as a non-growing population. In Spirillum sp. the Km for L-lactate transport (5.8 micrometer) was threefold lower than in Pseudomonas sp. (20 micrometer); Spirillum sp. also possessed a higher Vmax for the transport of this substrate. The surface to volume ratio was higher in Spirillum sp. and increased more markedly than in Pseudomonas sp. in response to decreasing D. Thus, a more efficient scavenging capacity contributes to the advantage of Spirillum sp. at low concentrations of the carbon source. Although most of the enzymes of L-lactate catabolism were more active in Pseudomonas sp., NADH oxidase activity was about twice as high in Spirillum sp.; and, unlike Pseudomonas sp., the cytochrome c content of this bacterium increased markedly with decreasing D. A more active and/or more efficient respiratory chain may therefore also play a role in the advantage of Spirillum sp. The other factors which appear to be involved include a lower energy of maintenance of Spirillum sp. [0.016 g L-lactate (g cell dry wt)-1 h-1 compared with 0.066 in Pseudomonas sp.] and a lower minimal growth rate.  相似文献   

19.
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.  相似文献   

20.
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号