首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human adipose tissue is a main contributor to plasma levels of pro-inflammatory cytokine IL-6. How IL-6 expression is regulated in adipocytes remains unclear. In the current study, we investigated the effect of the HMG-CoA reductase inhibitor, cerivastatin, on the production of IL-6 from cultured human adipocytes. Cerivastatin reduced both IL-6 mRNA and secretion in a dose- and time-dependent manner. The inhibitory effect on IL-6 mRNA was prevented by the intermediates of the cholesterol synthesis pathway, mevalonate and geranyl-geranyl-phyrophosphate (GGPP) but not by farnesyl-pyrophosphate. This suggests the involvement of geranylgeranyl-modified intermediates in the effect of cerivastatin on IL-6. Moreover, cerivastatin induced an inactivation of the phosphorylation of the p65 subunit of NFkappaB which was prevented by GGPP. Our data suggest that cerivastatin exerts an anti-inflammatory effect by down-regulating IL-6 levels in adipocytes, which seems to be mediated by reduced production of GGPP and interference with the NFkappaB pathway.  相似文献   

2.
The secretion of interleukin-6 (IL-6) is modulated by immune, hormonal and metabolic stimuli in a cell-specific manner. We investigated the effect of cytokines, TNFalpha and IL-1beta, and insulin on IL-6 release from human adipocytes and peripheral blood cells (PBC). Adipocytes released IL-6 constitutively (after 5 h: 5.64 [1.61-15.30]pg ml(-1), after 10 h: 15.95 [2.34-45.59]pg ml(-1), p = 0.007), while PBC secretion did not change significantly over this period. LPS stimulated IL-6 secretion in PBC after 5 h but was without effect on adipocytes. TNFalpha and insulin induced IL-6 production from PBC, but had no effect on adipocytes. IL-1beta, however, induced a substantial increase in IL-6 release in adipocytes and PBC (all p < 0.05). Adipose tissue production of IL-1beta was assessed in vivo by measuring arterio-venous differences across the subcutaneous abdominal adipose bed. Net release of IL-1beta was not observed, suggesting that under basal conditions there is no detectable release of this cytokine into the circulation from this depot. In conclusion (1) PBC demonstrate regulated IL-6 release, while the adipocyte release has a large constitutive component; (2) immune modulators, such as LPS, TNFalpha and IL-1beta, all induce PBC IL-6 release, but only IL-1beta stimulates adipocyte release. Though IL-1beta is not an endocrine signal from adipose tissue, it is an autocrine/paracrine stimulator of IL-6 release from human adipocytes.  相似文献   

3.
We previously demonstrated that trans-10, cis-12 conjugated linoleic acid (CLA) reduced the triglyceride content of human adipocytes by activating mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling via interleukins (IL) 6 and 8. However, the upstream mechanism is unknown. Here we show that CLA increased (>or=6 h) the secretion of IL-6 and IL-8 in cultures containing both differentiated adipocytes and stromal vascular (SV) cells, non-differentiated SV cells, and adipose tissue explants. CLA isomer-specific induction of IL-6 and tumor necrosis factor-alpha was associated with the activation of nuclear factor kappaB (NFkappaB) as evidenced by 1) phosphorylation of IkappaBalpha, IkappaBalpha kinase, and NFkappaB p65, 2) IkappaBalpha degradation, and 3) nuclear translocation of NFkappaB. Pretreatment with selective NFkappaB inhibitors and the MEK/ERK inhibitor U0126 blocked CLA-mediated IL-6 gene expression. Trans-10, cis-12 CLA suppression of insulin-stimulated glucose uptake at 24 h was associated with decreased total and plasma membrane glucose transporter 4 proteins. Inhibition of NFkappaB activation or depletion of NFkappaB by RNA interference using small interfering NFkappaB p65 attenuated CLA suppression of glucose transporter 4 and peroxisome proliferator-activated receptor gamma proteins and glucose uptake. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA promotes NFkappaB activation and subsequent induction of IL-6, which are at least in part responsible for trans-10, cis-12 CLA-mediated suppression of peroxisome proliferator-activated receptor gamma target gene expression and insulin sensitivity in mature human adipocytes.  相似文献   

4.
5.
6.
White adipose tissue is a major endocrine and signalling organ. It secretes multiple protein hormones and factors, termed adipokines (such as adiponectin, leptin, IL-6, MCP-1, TNFalpha) which engage in extensive cross-talk within adipose tissue and with other tissues. Many adipokines are linked to inflammation and immunity and these include cytokines, chemokines and acute phase proteins. In obesity, adipose tissue exhibits a major inflammatory response with increased production of inflammation-related adipokines. It has been proposed that hypoxia may underlie the inflammatory response in adipose tissue and evidence that the tissue is hypoxic in obesity has been obtained in animal models. Cell culture studies have demonstrated that the expression and secretion of key adipokines, including leptin, IL-6 and VEGF, are stimulated by hypoxia, while adiponectin (with an anti-inflammatory action) production falls. Hypoxia also stimulates glucose transport by adipocytes and may have a pervasive effect on cell function within adipose tissue.  相似文献   

7.
Adiponectin, an adipose tissue secreted protein, exhibits anti-inflammatory and antiatherogenic properties. We examined the effects of the globular and full-length adiponectin on cytokine production in macrophages derived from Coronary Artery Disease (CAD) patients and control individuals. Adiponectin's effects in human macrophages upon lipopolysaccharide (LPS) treatment were also examined. Full length adiponectin acted differently on TNF-α and IL-6 production by upregulating TNF-α and IL-6 protein production, but not their mRNA expression. Additionally, full length adiponectin was unable to abrogate LPS proinflammatory effect in TNF-α and IL-6 mRNA expression in CAD and NON-CAD macrophages. In contrast, globular adiponectin appeared to have proinflammatory properties by potently upregulating TNF-α and IL-6 mRNA and protein secretion in human macrophages while subsequently rendered cells resistant to further proinflammatory stimuli. Moreover, both forms of adiponectin powerfully suppressed scavenger MSR-AI mRNA expression and augmented IL-10 protein release, both occurring independently of the presence of LPS or CAD. These data indicate that adiponectin could potentially protect human macrophages via the elevated IL-10 secretion and the suppression of MSR-AI expression. It can also be protective in CAD patients since the reduced adiponectin-induced IL-6 release in CAD macrophages compared to controls, could be beneficial in the development of inflammation related atherosclerosis.  相似文献   

8.
9.
Over the last decade, compelling evidence has been presented that cytokines affect adipocyte tissue formation and function. In this study we explored the effect of pro-inflammatory (i.e. interleukin (IL)-1beta, IL-6, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha) versus anti-inflammatory cytokines (i.e. IL-4, IL-10, and transforming growth factor (TGF)-beta1) on leptin and adiponectin secretion during in vitro human adipogenesis. Confirmative to previous reports, conversion of precursor preadipocytes into mature adipocytes was completely inhibited upon exposure to TNF-alpha, IL-1beta, IFN-gamma, or TGF-beta1. Hence, all these anti-adipogenic cytokines prevented release of adipocyte-specific adiponectin. IFN-gamma also strongly reduced leptin production (> or =85%). However, TNF-alpha, IL-1beta, and TGF-beta1 stimulated leptin production from preadipocytes in the absence of mature adipocytes (20.6+/-5.4 ng/ml, 100.8+/-18.2 ng/ml, and 5.4+/-0.4 ng/ml, respectively, compared to 6.6+/-0.8 ng/ml in control adipocyte cultures on day 21; n=4). IL-4, IL-6 and IL-10 did not, or only slightly, affect adipocyte differentiation and their hormonal secretion. In conclusion, adiponectin and leptin are both synthesized by adipocytes, whereas leptin is also produced by preadipocytes upon TNF-alpha or IL-1beta stimulation. These data suggest that preadipocytes could contribute more to total circulating leptin levels than has been previously considered, especially in diseased conditions were these pro-inflammatory factors play a prominent role.  相似文献   

10.
11.
Adipose tissue-derived cytokines are presumably involved in obesity-associated pathologies including type 2 diabetes and atherosclerosis. Here we studied the lipopolysaccharide (LPS)-induced expression dynamics of tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6), IL-8 and IL-10 in human adipose tissue biopsies, in preadipocyte-derived adipocytes, and in mesenchymal stem cell (MSC)-derived adipocytes. TNFalpha, IL-6, IL-8 and IL-10 secretions by adipose tissue explants were increased 5.5-, 19.5-, 3.5- and 12.5-fold, respectively, by LPS (1 microg/mL) administration. Concordantly, IL-6 and IL-8 release was dose-dependently induced in MSC-derived adipocytes by LPS (>10 pg/mL). In contrast, TNFalpha and IL-10 remained undetectable even at the highest LPS dose (1 microg/mL) after 24h. In MSC- and preadipocyte-derived adipocytes, respectively, exposure to LPS evoked a weak and transient induction of TNFalpha mRNA whereas induction of IL-6 and IL-8 mRNA were pronounced and sustained for at least 24h. Basal glucose uptake, lipolysis and IL-6 mRNA were induced by exogenous TNFalpha (10 ng/mL) but not by IL-6 (10 ng/mL), IL-8 (100 ng/mL) and IL-10 (20 ng/mL). In this adipocyte model TNFalpha induces well known metabolic effects, but together with previous reports these data suggest that inflammation-induced TNFalpha may derive from non-adipocyte sources in adipose tissue, likely to be macrophages.  相似文献   

12.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40-49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-alpha), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle(4), D-Phe(7)]-alpha-MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-alpha upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R-effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

13.
Obesity is associated with a low-grade inflammation which is correlated with an increased secretion of pro-inflammatory cytokines and chemokines by adipose tissue, suspected to contribute to the development of insulin resistance. Because lycopene is mostly stored in adipose tissue and possesses anti-inflammatory properties, we hypothesize that lycopene could reduce the production of proinflammatory markers in adipose tissue. In agreement with this hypothesis, we observed a decrease of inflammatory markers such as IL-6, MCP-1 and IL-1β at both the mRNA and protein level when explants of epididymal adipose tissue from mice fed with a high-fat diet were incubated with lycopene ex vivo. The same effect was reproduced with explants of adipose tissue preincubated in lycopene and then subjected to TNFα stimulation. The contribution of adipocytes and preadipocytes was evaluated. In both preadipocytes and differentiated 3T3-L1 adipocytes, lycopene preincubation for 24 h decreased the TNFα-mediated induction of IL-6 and MCP-1. Finally, the same results were reproduced with human adipocyte primary cultures. The molecular mechanism was also studied. In transient transfections, a decrease of the luciferase gene reporter under control of NF-κB responsive element was observed for cells incubated in the presence of lycopene and TNFα compared to TNFα alone. The involvement of the NF-κB pathway was confirmed by the modulation of IKKα/β phosphorylation by lycopene.Altogether, these results showed for the first time a limiting effect of lycopene on adipose tissue proinflammatory cytokine and chemokine production. Such an effect could prevent or limit the prevalence of obesity-associated pathologies, such as insulin resistance.  相似文献   

14.
15.
Leptin secreted mainly by adipocytes plays an important role in insulin sensitivity in metabolic syndrome. Inducible nitric oxide synthase (iNOS) in 3T3-L1 adipocytes is induced by lipopolysaccharide (LPS) and several proinflammatory cytokines such as tumor necrosis factor-alpha and interferon-gamma (IFN-gamma). Because the role of iNOS-derived nitric oxide (NO) in adipocyte function has not been fully clarified, the question that we addressed in the present study was whether iNOS-derived NO is involved in regulation of leptin secretion by adipocytes. Incubation of 3T3-L1 adipocytes for 12h with a mixture of IFN-gamma and LPS caused not only a 55% reduction in leptin secretion and a 52% reduction in leptin mRNA, but also significant induction of iNOS at both protein and mRNA levels. Inhibition of leptin secretion that had been induced by the IFN-gamma-LPS mixture was completely nullified by NOS inhibitors such as Nomega-monomethyl-L-arginine and aminoguanidine. Treatment of adipocytes with NO donors such as an NONOate and S-nitrosoglutathione produced an effect on leptin secretion similar to that of the IFN-gamma-LPS mixture. It is likely therefore that NO mediates downregulation of leptin caused by the IFN-gamma-LPS mixture in 3T3-L1 adipocytes, which suggests an important role for NO in adipocyte functions.  相似文献   

16.
17.
Prolactin (PRL) is recognized as a metabolic regulator during lactation, but little information exists on its actions in male adipose tissue. We examined whether PRL affects the expression of its receptors (PRLR), lipolysis, and adipokine secretion in male rats. Both long and short PRLR isoforms were induced 40-50-fold during differentiation of epididymal preadipocytes, with a 10-fold higher expression of the long isoform. PRL upregulated both isoforms before and after differentiation. PRL suppressed lipolysis in epididymal explants and mature adipocytes in a dose- and time-dependent manner, which was reversed by a Jak2 inhibitor. PRL also inhibited leptin, but not adiponectin, release. We conclude that PRL inhibits lipolysis and leptin release by acting directly on adipocytes via interaction with either of its receptors and activation of a Jak2-dependent signaling pathway(s). This is the first demonstration of substantial effects of PRL on male adipocytes.  相似文献   

18.
19.
IntroductionDopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release.MethodsDAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting.ResultsDAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release.ConclusionsThis is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue.  相似文献   

20.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40–49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-α), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle4, D-Phe7]-α -MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-α upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R–effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号