首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作者采用行为学方法测定了伏击型凶猛鱼类鳜鱼视觉对猎物运动和形状特征的反应特性.鳜鱼对3种不同体形饵料鱼有最强的跟踪反应和攻击反应,对虾则有较强的跟踪反应而几乎没有攻击反应,对蜻蜒幼虫仅有不强的跟踪反应而完全没有攻击反应.它对低速(v≤5cm/s)一连续和等间歇不连续运动的饵料鱼有较强的跟踪反应和攻击反应,对中速和高速(v≥10cm/s)连续运动的饵料鱼有最强的跟踪反应而几乎没有或完全没有攻击反应,对中速和高速等间歇不连续运动的饵料鱼则有最强的跟踪反应和最强的攻击反应.它对不连续运动的a、b、c、d、e、f6种形状均有跟踪反应,但近距离跟踪反应的强度与形状特征有关系,对不连续运动的b、c、d3种形状完全没有攻击反应,而对不连续运动的a、e、f3种形状则有依次增强的攻击反应.鳜鱼视觉可对猎物运动进行远距离的识别,并决定其对猎物的远距离跟踪反应.且其视觉仅能对猎物的大致形状进行近距离识别,并决定其对猎物的近距离跟踪反应和攻击反应.    相似文献   

2.
The feeding behaviour of the freshwater leech Erpobdella octoculata was analysed by exposing potential invertebrate and vertebrate prey organisms (alive, wounded or dead) to leech attack in dishes, in the laboratory. The fact that E. octoculata is a macrophagous feeder that swallows living prey organisms whole (preferentially Chironomus larvae) is documented. However, it was repeatedly observed that adult leeches sucked the body fluids from wounded larvae. Likewise, cut pieces of earthworms, dead crustaceans and crushed water snails were attacked and the soft parts sucked in with the aid of the unarmed pharynx. Adult leeches sucked the body fluids from dead, decaying bodies of vertebrates (fish, newt larvae). Newly hatched young are blood suckers that rapidly attacked the wounded regions of Chironomus larvae and other invertebrates such as crushed water snails. It is concluded that the common leech E. octoculata is not only a predator, but also a fluid sucker and a scavenger. The ecological implications of this finding are discussed.  相似文献   

3.
Abstract. Cues released by predators and injured prey often induce shifts in prey behavior that allow prey to evade predators, but also affect prey resource use. I investigated the effects of chemical and mechanical signals produced by injured snails (Physella gyrina) and predatory crayfish (Procambarus clarkii) on microdistributions of P. gyrina. In an initial experiment, I observed snail responses to the presence of a caged crayfish predator, to injured conspecifics, or to both. There were significant effects of time and the treatment × time interaction on the proportion of snails moving above the water line, with greater proportions of snails above the water line at night than during the day and with weak snail crawl‐out behavior being elicited by caged crayfish at night, but not during the day. In a second experiment, I examined snail microdistributions when exposed to crayfish confined to a small cage within each aquarium, crayfish confined to half of each aquarium, and crayfish ranging freely throughout each aquarium. Snails responded most strongly to free‐ranging crayfish by moving above the water line, but also demonstrated significant, but reduced, crawl‐out responses to crayfish confined to half of each aquarium; however, snails did not respond behaviorally to crayfish confined to small cages. In both experiments, there were marginally significant effects of unfed caged crayfish on the proportions of snail populations hiding under benthic shelters, with this response being the strongest at the start of the experiments but weak overall (with only 4–5% of P. gyrina responding in each experiment). These results indicate that cues (e.g., chemical or mechanical) produced by predators altered prey microdistributions, but that the exact prey responses (e.g., moving above the water line or into horizontal or benthic refugia) depended on the intensity and nature of cues.  相似文献   

4.
艾虎对不同猎物的选择性   总被引:2,自引:0,他引:2  
在室内条件下,将高原鼢鼠(Myospalaxbaileyi)、高原鼠兔(Ochotonacurzoniae)和根田鼠(Microtusoeconomus)作为艾虎(Mustelaeversmanni)的猎物选择对象,研究艾虎对猎物的选择性及艾虎捕杀猎物的行为时间分配。实验结果表明:艾虎对三种猎物的搜寻时间和搜寻频次基本一致,在搜寻猎物的过程中并非已知洞道系统中所存在的食物信息,是一种机会主义的捕食者;艾虎除了具有典型鼬科动物捕杀猎物的方法外,能够根据猎物的大小、活动性和反捕食能力采用不同的捕杀方法,在捕杀猎物的过程中首先捕杀高原鼢鼠,其致死部位全部为头部,其次捕杀高原鼠兔,其致死部位除了头部外,明显增加了颈部的比例,最后捕杀根田鼠,其致死部位主要是头部和胸部;艾虎在捕杀猎物的过程中,追击根田鼠的时间最多,追击鼢鼠的时间最少,而用于捕杀根田鼠的时间最少,用于捕杀鼢鼠的时间最多,艾虎捕杀高原鼠兔后单位时间内获得的能量值最大,其次为捕杀高原鼢鼠,而捕杀根田鼠后单位时间内活动的能量值最小。因此,在室内条件下艾虎对猎物的选择性主要依赖于其本身处理猎物的行为时间分配和猎物的反捕食行为,使单位时间内获得的能量值最大.  相似文献   

5.
The flatworm Platydemus manokwari (Tricladida: Rhynchodemidae) preys on various species of land snail, and its introduction to areas outside of its native range is thought to have caused the extinction of native land snails on several Pacific islands. Platydemus manokwari occurs in areas where land snails have been absent since its invasion, suggesting that the flatworm can prey on animals other than land snails. To identify the alternative prey and prey preferences of P. manokwari, I examined the feeding ecology of P. manokwari under field and laboratory conditions. Individuals were observed attacking live earthworms in a forest where land snails are already extinct, on Chichijima, Ogasawara (Bonin) Islands, Japan. I also observed them attacking earthworms and a species of isopod and land snail in the lab. To prey on the worm, similar to other earthworm-eating flatworms, P. manokwari wrapped itself around the prey and fed on it by inserting its pharynx into the earthworm’s body. Large earthworms were able to escape P. manokwari attacks by autotomy, but the autotomized body parts were eaten. Several P. manokwari individuals together attacked earthworms that were larger than themselves. The laboratory experiments showed that such gregarious attacks increased predation success on both large earthworms and land snails. The flatworms also attacked the isopods, although the predation rate was low. These results demonstrate that P. manokwari is a polyphagous predator of slow-moving soil invertebrates (land snails, slugs, earthworms, and isopods) and that invasion by P. manokwari may directly and indirectly impact native soil fauna.  相似文献   

6.
Batrachocottus baicalensis , endemic to Lake Baikal, Russia, has wider lateral line canals than Paracottus kneri , which also inhabits Siberian streams. In quiet water B. baicalensis responded to amphipods at a greater distance than did P. kneri. Batrachocottus baicalensis also moves less often from search positions than does P. kneri . Fish responded to faster moving prey at a greater distance than slower prey. They also responded to a greater distance to prey moving more parallel to the fish's body surface. In an artificial stream B. baicalensis responded only to prey that touched them whilst P. kneri responded to both swimming prey and prey that contacted them. It is argued that B. baicalensis is primarily an ambush predator that is a habitat specialist and P. kneri is a cruising predator that visits many habitats.  相似文献   

7.
W. Cresswell  J. L. Quinn 《Oikos》2004,104(1):71-76
Whether predators always attack the most vulnerable prey or simply attack prey that exceeds a minimum vulnerability level is an important question to answer in furthering our understanding of predator and antipredation behaviour. Predators may attack any reasonably vulnerable prey rather than waste time identifying the most vulnerable prey, particularly when prey can respond quickly to alter their vulnerability in response to a predator. We tested whether sparrowhawks always choose to attack the group of prey that maximises their capture probability, or whether they simply attack any group above a minimum vulnerability. We modelled sparrowhawk attack success when hunting redshanks using data from three winters and found that probability of capture increased when group size or distance to predator-concealing cover decreased. We then used this model to predict the relative vulnerability to capture of redshank groups occurring in pairs in a fourth winter and found that sparrowhawks attacked the most vulnerable prey group twice as often as not (66% n=59 pairs). When sparrowhawks attacked the less vulnerable group, there was no tendency for both groups to be particularly vulnerable or for the difference in the vulnerability between the two groups to be relatively small. This suggests that, while sparrowhawks do on average attack the most vulnerable group available, they consider other factors that affect vulnerability or that additional factors lead them to also attack opportunistically. This suggests that there will be selection for the predator to monitor a large number of prey individuals and groups and for prey to have the ability to monitor the behaviour of conspecifics in the same and different groups so that they can assess relative vulnerability.  相似文献   

8.
Arthropod predators and parasitoids support the health and functioning of the world's ecosystems, most notably by supplying biological control services to agricultural landscapes. Quantifying the impact that these organisms have on their prey can be challenging, as direct observation and measurement of arthropod predation is difficult. The use of sentinel prey is one method to measure predator impact; however, despite widespread use, few studies have compared predation on different prey types within a single experiment. This study evaluated the predation rates on four sentinel prey items in grass and wheat fields in south-east Queensland, Australia. Attack rates on live and dead Helicoverpa armigera eggs, and dead H. armigera larvae and artificial plasticine larvae, were compared and the predators that were attracted to each prey type were documented with the use of field cameras. There was no significant difference in predation rates between sentinel eggs, while dead larvae were significantly more attacked than artificial larvae. Prey were attacked by a diverse range of predators, including ants, beetles, various nymph and juvenile insects and small mammals. Different predators were active in grass and crop fields, with predator activity peaking around dawn and dusk. The same trends were observed within and between the two habitats studied, providing a measure of confidence in the sentinel prey method. A range of different sentinel prey types could be suitable for use in most comparative studies; however, each prey type has its own benefits and limitations, and these should be carefully evaluated to determine which is most suitable to address the research questions.  相似文献   

9.
David B. Lewis  Lisa A. Eby 《Oikos》2002,96(1):119-129
The effect of habitat structure on interactions between predators and prey may vary spatially. In estuarine salt marshes, heterogeneity in refuge quality derives from spatial variation in vegetation structure and in tidal inundation. We investigated whether predation by blue crabs on periwinkle snails was influenced by distance from the seaward edge of the salt marsh and by characteristics of the primary habitat structure, smooth cordgrass ( Spartina alterniflora ). Spartina may provide refuge for snails and interfere with foraging by crabs. Furthermore, predation risk should decline with distance from the seaward edge because landward regions require more travel time for crabs during tidal inundation. We investigated these processes using a comparative survey of snails and habitat traits, an experiment that assessed the crab population and measured predation risk, and a size-structured model that estimated encounter rates. Taken together, these approaches indicated that predation risk for snails was lower where Spartina was present and was lower in a landward direction. Furthermore, Spartina architecture and distance from the seaward edge interacted. The strength of the predation gradient between seaward and landward regions of the marsh was greater where Spartina was tall or dense. These predation gradients emerge because vegetation and distance inland decrease encounter rates between crabs and snails. This study suggests that habitat modification, a process not uncommon in salt marshes, may have consequences for interactions among intertidal fauna.  相似文献   

10.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   

11.
Abstract

We investigated how insects use wax as a defence against visual predators, using a New Zealand salticid species, Marpissa marina, as the predator and Eriosoma lanigerum, an aphid that covers itself with wax, as the prey. For live‐prey testing, the predator was presented with two aphids, one with its wax covering intact and one with its wax removed. The predator ate more of the waxless than wax‐covered aphids. The predators were presented with two lures at a time: (1) one that was fully covered with wax (hid the aphid's head) compared with one that was without wax (waxless) or (2) one that was fully covered with wax compared with one that was only partially covered with wax (the head of the prey exposed), or (3) one that was waxless compared with one that was partially covered with wax. The predators stalked waxless prey more often than they stalked prey that was fully or partially covered with wax. When wax only partially covered the prey (i.e., when the prey's head was left exposed), the predator more often stalked than when the insect was fully covered. These findings suggest that the aphid's wax covering functions in part to hide prey‐identification cues from vision‐guided predators.  相似文献   

12.
We studied factors that affect prey selection by a generalist predator that opportunistically attacks prey species, and the associated inter- and intra-specific responses of prey to this type of predation. Our model system was a guild of ground-foraging birds that are preyed upon by magpies (Pica pica) during the breeding season. We found that magpies attacked up to 12 species during three consecutive breeding seasons. The overall capture success was estimated to be 4.9%. Magpies tended to attack from the air, targeting solitary prey, either on the ground or flying. Inter-specific prey responses to the risk of magpie predation included a reduction in the mean number of species occupying a foraging patch when magpies were present and a decrease in the distance between heterospecific neighbours. Intra-specific responses to magpie predation varied between species that were subject to different attack rates. Preferentially attacked prey enhanced their risk responses (increase in scanning time and scanning rate in the presence of magpies) relative to those species attacked in proportion to their abundance (increase only in scanning rate with magpies). Species attacked infrequently, relative to their abundance, showed no antipredator response. The probability of being attacked, rather than mortality rate, appears to be the factor to which prey species respond.  相似文献   

13.
The influence of predation risk on diet selectivity: A theoretical analysis   总被引:13,自引:0,他引:13  
Studies that have examined the effect of experimental increases in predation risk on diet selectivity have shown both decreased and increased diet selectivity. A possible explanation for these disparate results emerges from an examination of the prey sets used in these studies, which differed in the relationship between the values of risk components associated with the capture of different prey types (‘danger’) and their profitabilities. When less profitable prey were more dangerous, selectivity increased with predation risk. When prey were equally dangerous, selectivity did not change. Finally, when the more profitable prey were also more dangerous, selectivity decreased with risk. Here, we examine theoretically the influence of a forager's estimate of the probability that a predator is present (φ) on the selection of diets from prey sets with varying danger–profitability relationships. A dynamic programming model is used to determine the maximum attack time (or distance) for each of two types of prey, differing in their energetic content, for a range of forager energy state and φ levels. The diets which would result if foragers attacked prey according to the rules provided by the dynamic model are then determined. The model results indicate that the prey danger–profitability relationship determines the diet selectivity response to φ, confirming that variation in this relationship could be responsible for the range of experimental results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Experimental studies were conducted under both laboratory and field conditions to determine the effects of prey density, three levels of prey aggregation, water depth, and predator density on the number of snails killed per larva of Sepedon fuscipennis. Of these factors, predation rates were most influenced by prey density and water depth. The number of small (2–4.5 mm) Lymnaea palustris killed per larva of S. fuscipennis increased at a decreasing rate as prey density increased under shallow water conditions. Larvae killed a mean of 14 snails at a prey density of 200/m2, while an average of 24 snails were killed per larva of S. fuscipennis at a prey density of 4000/m2. This functional response to prey density was largely confined to third-instar larvae, and as water depth was increased the response was not apparent.A field study in which larval densities of S. fuscipennis were manipulated showed that the population density of smaller individuals of L. palustris (< 4.5 mm) was reduced when predator density was increased. Populations of Physa integra, Gyraulus parvus, and larger L. palustris were not significantly reduced by the malacophagous larvae at the levels tested.  相似文献   

15.
We used a video imaging technique to test the effects of prey movement on attack behavior and foraging patch residence time decision rules of wolf spiders. TwelveSchizocosa ocreata (Hentz) (Lycosidae) were tested in an artificial foraging patch stimulus chamber consisting of a microscreen television displaying a computer digitized, animated image of a cricket. Four prey movement treatments were used: (1) a blank screen, (2) a stationary cricket control, (3) a cricket moving for 1 min, and (4) a cricket moving for 10 min. Spiders stayed significantly longer in treatments with higher cricket activity. Spiders also stayed longer when they attacked the stimulus than when they did not. The distribution of patch residence times of spiders indicates a decision rule based on a fixed probability of leaving.  相似文献   

16.
Susan M.  Swift 《Journal of Zoology》1997,242(2):375-384
Seven nursery roosts and four roosts of male Myotis nattereri , Kuhl 1818 were found in central Scotland at latitude 56–57 N. Most were in crevices in the stonework of man-made structures other than occupied houses. Emergence occurred late in the evening, at an average light intensity of 3.5 lux and emerging bats circled in dark, sheltered areas outside roosts before departing along flyways towards foraging areas. Individuals departed from, and returned to, roosts in groups of 2-6, and circling behaviour was repeated on returning to the roost. During pregnancy, bats from anursery roost made one flight each per night. This increased to an average maximum of 1.84 early in lactation and then decreased again to one around weaning. Night roosts were situated in foraging areas and were used by M. nattereri for resting and grooming, for suckling volant but incompletely weaned young and also, possibly, for information transfer. Important foraging habitats were woodland edges, parkland, roadside vegetation and sheltered areas of water. Arthropod prey was captured both on the wing and by gleaning from foliage, and the bats were able to vary their diet according to arthropod availability. Overall, important prey included Diptera (both Nematocera and higher flies), Trichoptera, Coleoptera and non-flying groups such as Hemiptera, Dermaptera, Arachnida and Opiliones.  相似文献   

17.
SUMMARY. 1. The importance of different senses in prey detection by the common water mite Unionicola carssipes was investigated.
2. Mechanoreception is likely to be the most important mode of detection; mites preferentially attacked vibrating over non-vibrating glass probes. The net-stance, a characteristic posture in which the mite raises its first two sets of legs from the substrate and orients toward vibrations in the water column, is assumed by U. crassipes when hunting.
3. Chemoreception may have a role in area-restricted search: mites exposed to prey-conditioned water were more sedentary than those exposed to unconditioned water. For a sit-and-wait predator like U. crassipes , remaining still in an area that contains prey will result in a greater predator/prey encounter rate. It is possible that contact chemoreception is used to determine the palatability of an already captured prey item, but mites did not attempt to capture prey they had touched unless the prey moved.
4. Vision is not necessary for prey capture; however, mites captured more prey in the light than in the dark. It is not clear whether this is because vision plays a part in prey detection or because prey behave differently in the two situations.  相似文献   

18.
Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon) pursued a moving moth (Goniocraspidum pryeri) in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the angles. Finally, the mathematical model was extended to include a bat and prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat’s dynamical attention towards prey, that is, simultaneous pursuit of prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat’s dynamical flight strategy during multiple prey pursuit.  相似文献   

19.
Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources. Received: 1 June 1998 / Accepted: 12 October 1998  相似文献   

20.
An avoidance learning submodel for a general predation model   总被引:1,自引:0,他引:1  
Lawrence M. Dill 《Oecologia》1973,13(4):291-312
Summary This paper attempts to determine the effect on the number of prey eaten by predators of the addition of the component avoidance learning by prey to a computer model of the predation process developed by Holling. Generality was retained by concentrating upon a basic aspect of the prey's behaviour, its distance of reaction to an approaching predator. The zebra danio (Brachydanio rerio), a small freshwater fish, was used as an analogue of a general vertebrate prey. The predator used was the largemouth bass (Micropterus salmoides).Previous work (Dill, 1973b) showed that prey reactive distance increased with increasing experience with the predator. In the present study, this increased prey reactive distance is shown to increase predator pursuit time and hypothesized to decrease predator pursuit success. These relationships were expressed mathematically and built into Holling's (1965, 1966) model of the predation process, along with an equation describing the way in which reactive distance increases following an unsuccessful attack. Other changes necessitated in the model by the addition of the avoidance learning component included: a) Modifications of the calculation of search time to remove a previously implicit time spent unsuccessfully pursuing prey, and to correct the density of prey to account for those whose reactive distances exceed that of the predator and are therefore not susceptible to discovery; b) Addition of a new subroutine (CHASE) to calculate pursuit time, unsuccessful pursuit time, pursuit success, and strike success; c) Changes in subroutine ADCOM to assign prey to different classes (with different reactive distances) according to the number of times they have been unsuccessfully attacked; and d) Addition of a stochastic element via random numbers to determine the class to which an attacked prey belongs, the time to refuge, and the predator's strike success.Simulation was used to explore the consequences of these additions. The capability of learning substantially increased the prey's probability of surviving subsequent attack. Addition of an avoidance learning component caused declines in the predator's functional responses to both prey and predator density. The new component was also suggested to decrease the predator's numerical response to prey density and to increase the probability of stability in a predator-prey interaction.From a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, University of British Columbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号