首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.  相似文献   

2.
Within plastid-bearing species, the relative rates of evolution between mitochondrial and plastid genomes are poorly studied, but for the few lineages in which they have been explored, including land plants and green algae, the mitochondrial DNA mutation rate is nearly always estimated to be lower than or equal to that of the plastid DNA. Here, we show that in protists from three distinct lineages with secondary, red algal-derived plastids, the opposite is true: their mitochondrial genomes are evolving 5-30 times faster than their plastid genomes, even when the plastid is nonphotosynthetic. These findings have implications for understanding the origins and evolution of organelle genome architecture and the genes they encode.  相似文献   

3.
The plastid in Apicomplexa: what use is it?   总被引:2,自引:0,他引:2  
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.  相似文献   

4.
A Roy  R A Cox  D H Williamson  R J Wilson 《Protist》1999,150(2):183-188
The plastid organelle of malarial and other apicomplexan parasites contains ribosome-like particles as well as a genome dedicated largely to specifying components of a protein expression system. We have identified plastid ribosomes using hybridization studies and show that in erythrocytic stages of Plasmodium falciparum a subset of polysomes carries plastid-specified rRNAs and mRNA, supporting the idea that protein synthesis is active in the plastid.  相似文献   

5.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

6.
The apicoplast: a review of the derived plastid of apicomplexan parasites   总被引:11,自引:0,他引:11  
The apicoplast is a plastid organelle, homologous to chloroplasts of plants, that is found in apicomplexan parasites such as the causative agents of Malaria Plasmodium spp. It occurs throughout the Apicomplexa and is an ancient feature of this group acquired by the process of endosymbiosis. Like plant chloroplasts, apicoplasts are semi-autonomous with their own genome and expression machinery. In addition, apicoplasts import numerous proteins encoded by nuclear genes. These nuclear genes largely derive from the endosymbiont through a process of intracellular gene relocation. The exact role of a plastid in parasites is uncertain but early clues indicate synthesis of lipids, heme and isoprenoids as possibilities. The various metabolic processes of the apicoplast are potentially excellent targets for drug therapy.  相似文献   

7.

Background

The apicomplexan parasite Cryptosporidium parvum is an emerging pathogen capable of causing illness in humans and other animals and death in immunocompromised individuals. No effective treatment is available and the genome sequence has recently been completed. This parasite differs from other apicomplexans in its lack of a plastid organelle, the apicoplast. Gene transfer, either intracellular from an endosymbiont/donor organelle or horizontal from another organism, can provide evidence of a previous endosymbiotic relationship and/or alter the genetic repertoire of the host organism. Given the importance of gene transfers in eukaryotic evolution and the potential implications for chemotherapy, it is important to identify the complement of transferred genes in Cryptosporidium.

Results

We have identified 31 genes of likely plastid/endosymbiont (n = 7) or prokaryotic (n = 24) origin using a phylogenomic approach. The findings support the hypothesis that Cryptosporidium evolved from a plastid-containing lineage and subsequently lost its apicoplast during evolution. Expression analyses of candidate genes of algal and eubacterial origin show that these genes are expressed and developmentally regulated during the life cycle of C. parvum.

Conclusions

Cryptosporidium is the recipient of a large number of transferred genes, many of which are not shared by other apicomplexan parasites. Genes transferred from distant phylogenetic sources, such as eubacteria, may be potential targets for therapeutic drugs owing to their phylogenetic distance or the lack of homologs in the host. The successful integration and expression of the transferred genes in this genome has changed the genetic and metabolic repertoire of the parasite.  相似文献   

8.
Reports of plant-like and bacterial-like genes for a number of parasitic organisms, most notably those within the Apicomplexa and Kinetoplastida, have appeared in the literature over the last few years. Among the apicomplexan organisms, following discovery of the apicomplexan plastid (apicoplast), the discovery of plant-like genes was less surprising although the extent of transfer and the relationship of transferred genes to the apicoplast remained unclear. We used new genome sequence data to begin a systematic examination of the extent and origin of transferred genes in the Apicomplexa combined with a phylogenomic approach to detect potential gene transfers in four apicomplexan genomes. We have detected genes of algal nuclear, chloroplast (cyanobacterial) and proteobacterial origin. Plant-like genes were detected in species not currently harbouring a plastid (e.g. Cryptosporidium parvum) and putatively transferred genes were detected that appear to be unrelated to the function of the apicoplast. While the mechanism of acquisition for many of the identified genes is not certain, it appears that some were most likely acquired via intracellular gene transfer from an algal endosymbiont while others may have been acquired via horizontal gene transfer.  相似文献   

9.
Dinoflagellates are important aquatic primary producers and cause "red tides." The most widespread plastid (photosynthetic organelle) in these algae contains the unique accessory pigment peridinin. This plastid putatively originated via a red algal secondary endosymbiosis and has some remarkable features, the most notable being a genome that is reduced to 1-3 gene minicircles with about 14 genes (out of an original 130-200) remaining in the organelle and a nuclear-encoded proteobacterial Form II Rubisco. The "missing" plastid genes are relocated to the nucleus via a massive transfer unequaled in other photosynthetic eukaryotes. The fate of these characters is unknown in a number of dinoflagellates that have replaced the peridinin plastid through tertiary endosymbiosis. We addressed this issue in the fucoxanthin dinoflagellates (e.g., Karenia brevis) that contain a captured haptophyte plastid. Our multiprotein phylogenetic analyses provide robust support for the haptophyte plastid replacement and are consistent with a red algal origin of the chromalveolate plastid. We then generated an expressed sequence tag (EST) database of 5,138 unique genes from K. brevis and searched for nuclear genes of plastid function. The EST data indicate the loss of the ancestral peridinin plastid characters in K. brevis including the transferred plastid genes and Form II Rubisco. These results underline the remarkable ability of dinoflagellates to remodel their genomes through endosymbiosis and the considerable impact of this process on cell evolution.  相似文献   

10.
11.
Plastids in heterokonts, cryptophytes, haptophytes, dinoflagellates, chlorarachniophytes, euglenoids, and apicomplexan parasites derive from secondary symbiogenesis. These plastids are surrounded by one or two additional membranes covering the plastid-envelope double membranes. Consequently, nuclear-encoded plastid division proteins have to be targeted into the division site through the additional surrounding membranes. Electron microscopic observations suggest that the additional surrounding membranes are severed by mechanisms distinct from those for the division of the plastid envelope. In heterokonts, cryptophytes and haptophytes, the outermost surrounding membrane (epiplastid rough endoplasmic reticulum, EPrER) is studded with cytoplasmic ribosomes and connected to the rER and the outer nuclear envelope. In monoplastidic species belonging to these three groups, the EPrER and the outer nuclear envelope are directly connected to form a sac enclosing the plastid and the nucleus. This nuclear-plastid connection, referred to as the nucleus-plastid consortium (NPC), may be significant to ensure the transmission of the plastids during cell division. The plastid dividing-ring (PD-ring) is a conserved component of the division machinery for both primary and secondary plastids. Also, homologues of the bacterial cell division protein, FtsZ, may be involved in the division of secondary plastids as well as primary plastids, though in secondary plastids they have not yet been localized to the division site. It remains to be examined whether or not dynamin-like proteins and other protein components known to function in the division of primary plastids are used also in secondary plastids. The nearly completed sequencing of the nuclear genome of the diatom Thalassiosira pseudonana will give impetus to molecular and cell biological studies on the division of secondary plastids.  相似文献   

12.
13.
Extrachromosomal DNA in the Apicomplexa.   总被引:8,自引:0,他引:8       下载免费PDF全文
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.  相似文献   

14.
Malaria and related parasites retain a vestigial, but biosynthetically active, plastid organelle acquired far back in evolution from a red algal cell. The organelle appears to be essential for parasite transmission from cell to cell and carries the smallest known plastid genome. Why has this genome been retained? The genes it carries seem to be dedicated to the expression of just two "housekeeping" genes. We speculate that one of these, called ycf24 in plants and sufB in bacteria, is tied to an essential "dark" reaction of the organelle--fatty acid biosynthesis. "Ball-park" clues to the function of bacterial suf genes have emerged only recently and point to the areas of iron homeostasis, [Fe-S] cluster formation and oxidative stress. We present experimental evidence for a physical interaction between SufB and its putative partner SufC (ycf16). In both malaria and plants, SufC is encoded in the nucleus and specifies an ATPase that is imported into the plastid.  相似文献   

15.
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.  相似文献   

16.
Chlorarachniophytes are marine amoeboflagellate protists that have acquired their plastid (chloroplast) through secondary endosymbiosis with a green alga. Like other algae, most of the proteins necessary for plastid function are encoded in the nuclear genome of the secondary host. These proteins are targeted to the organelle using a bipartite leader sequence consisting of a signal peptide (allowing entry in to the endomembrane system) and a chloroplast transit peptide (for transport across the chloroplast envelope membranes). We have examined the leader sequences from 45 full-length predicted plastid-targeted proteins from the chlorarachniophyte Bigelowiella natans with the goal of understanding important features of these sequences and possible conserved motifs. The chemical characteristics of these sequences were compared with a set of 10 B. natans endomembrane-targeted proteins and 38 cytosolic or nuclear proteins, which show that the signal peptides are similar to those of most other eukaryotes, while the transit peptides differ from those of other algae in some characteristics. Consistent with this, the leader sequence from one B. natans protein was tested for function in the apicomplexan parasite, Toxoplasma gondii, and shown to direct the secretion of the protein.  相似文献   

17.
The apicoplast is a non-photosynthetic relict plastid of Apicomplexa that evolved from a secondary symbiotic system. During its evolution, most of the genes derived from its alga ancestor were lost. Only genes involved in several valuable metabolic pathways, such as the synthesis of isoprenoid precursors, heme, and fatty acids, have been transferred to the host genome and retained to help these parasites adapt to a complex life cycle and various living environments. The biological function of an apicoplast is essential for most apicomplexan parasites. Considering their potential as drug targets, the metabolic functions of this symbiotic organelle have been intensively investigated through computational and biological means. Moreover, we know that not only organellar metabolic functions are linked with other organelles, but also their biogenesis processes have developed and evolved to tailor their biological functions and proper inheritance. Several distinct features have been found in the biogenesis process of apicoplasts. For example, the apicoplast borrows a dynamin-related protein (DrpA) from its host to implement organelle division. The autophagy system has also been repurposed for linking the apicoplast and centrosome during replication and the division process. However, many vital questions remain to be answered about how these parasites maintain and properly inherit this symbiotic organelle. Here we review our current knowledge about its biogenesis process and discuss several critical questions remaining to be answered in this field.  相似文献   

18.

Background

The photosynthetic organelle (plastid) originated via primary endosymbiosis in which a phagotrophic protist captured and harnessed a cyanobacterium. The plastid was inherited by the common ancestor of the red, green (including land plants), and glaucophyte algae (together, the Plantae). Despite the critical importance of primary plastid endosymbiosis, its ancient derivation has left behind very few “footprints” of early key events in organelle genesis.

Methodology/Principal Findings

To gain insights into this process, we conducted an in-depth phylogenomic analysis of genomic data (nuclear proteins) from 17 Plantae species to identify genes of a surprising provenance in these taxa, Chlamydiae bacteria. Previous studies show that Chlamydiae contributed many genes (at least 21 in one study) to Plantae that primarily have plastid functions and were postulated to have played a fundamental role in organelle evolution. Using our comprehensive approach, we identify at least 55 Chlamydiae-derived genes in algae and plants, of which 67% (37/55) are putatively plastid targeted and at least 3 have mitochondrial functions. The remainder of the proteins does not contain a bioinformatically predicted organelle import signal although one has an N-terminal extension in comparison to the Chlamydiae homolog. Our data suggest that environmental Chlamydiae were significant contributors to early Plantae genomes that extend beyond plastid metabolism. The chlamydial gene distribution and protein tree topologies provide evidence for both endosymbiotic gene transfer and a horizontal gene transfer ratchet driven by recurrent endoparasitism as explanations for gene origin.

Conclusions/Significance

Our findings paint a more complex picture of gene origin than can easily be explained by endosymbiotic gene transfer from an organelle-like point source. These data significantly extend the genomic impact of Chlamydiae on Plantae and show that about one-half (30/55) of the transferred genes are most closely related to sequences emanating from the genome of the only environmental isolate that is currently available. This strain, Candidatus Protochlamydia amoebophila UWE25 is an endosymbiont of Acanthamoeba and likely represents the type of endoparasite that contributed the genes to Plantae.  相似文献   

19.
The discovery of a non-photosynthetic plastid genome in Plasmodium falciparum and other apicomplexans has provided a new drug target, but the evolutionary origin of the plastid has been muddled by the lack of characters, that typically define major plastid lineages. To clarify the ancestry of the plastid, we undertook a comprehensive analysis of all genomic characters shared by completely sequenced plastid genomes. Cladistic analysis of the pattern of plastid gene loss and gene rearrangements suggests that the apicomplexan plastid is derived from an ancestor outside of the green plastid lineage. Phylogenetic analysis of primary sequence data (DNA and amino acid characters) produces results that are generally independent of the analytical method, but similar genes (i.e., rpoB and rpoC) give similar topologies. The conflicting phylogenies in primary sequence data sets make it difficult to determine the the exact origin of the apicomplexan plastid and the apparent artifactual association of apicomplexan and euglenoid sequences suggests that DNA sequence data may be an inappropriate set of characters to address this phylogenetic question. At present we cannot reject our null hypothesis that the apicomplexan plastid is derived from a shared common ancestor between apicomplexans and dinoflagellates. During the analysis, we noticed that the Plasmodium tRNA-Met is probably tRNA-fMet and the tRNA-fMet is probably tRNA-Ile. We suggest that P. falciparum has lost the elongator type tRNA-Met and that similar to metazoan mitochondria there is only one species of methionine tRNA. In P. falciparum, this has been accomplished by recruiting the fMet-type tRNA to dually function in initiation and elongation. The tRNA-Ile has an unusual stem-loop in the variable region. The insertion in this region appears to have occurred after the primary origin of the plastid and further supports the monophyletic ancestory of plastids.  相似文献   

20.
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ~110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号