首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Bartonella henselae causes the vasculoproliferative disorders bacillary angiomatosis (BA) and bacillary peliosis (BP). The pathomechanisms of these tumorous proliferations are unknown. Our results suggest a novel bacterial two-step pathogenicity strategy, in which the pathogen triggers growth factor production for subsequent proliferation of its own host cells. In fact, B. henselae induces host cell production of the angiogenic factor vascular endothelial growth factor (VEGF), leading to proliferation of endothelial cells. The presence of B. henselae pili was associated with host cell VEGF production, as a Pil- mutant of B. henselae was unable to induce VEGF production. In turn, VEGF-stimulated endothelial cells promoted the growth of B. henselae. Immunohistochemistry for VEGF in specimens from patients with BA or BP revealed increased VEGF expression in vivo. These findings suggest a novel bacteria-dependent mechanism of tumour growth.  相似文献   

2.
Bartonella henselae is an arthropod-borne zoonotic pathogen causing intraerythrocytic bacteraemia in the feline reservoir host and a broad range of clinical manifestations in incidentally infected humans. Remarkably, B. henselae can specifically colonize the human vascular endothelium, resulting in inflammation and the formation of vasoproliferative lesions known as bacillary angiomatosis and bacillary peliosis. Cultured human endothelial cells provide an in vitro system to study this intimate interaction of B. henselae with the vascular endothelium. However, little is known about the bacterial virulence factors required for this pathogenic process. Recently, we identified the type IV secretion system (T4SS) VirB as an essential pathogenicity factor in Bartonella, required to establish intraerythrocytic infection in the mammalian reservoir. Here, we demonstrate that the VirB T4SS also mediates most of the virulence attributes associated with the interaction of B. henselae during the interaction with human endothelial cells. These include: (i) massive rearrangements of the actin cytoskeleton, resulting in the formation of bacterial aggregates and their internalization by the invasome structure; (ii) nuclear factor kappaB-dependent proinflammatory activation, leading to cell adhesion molecule expression and chemokine secretion, and (iii) inhibition of apoptotic cell death, resulting in enhanced endothelial cell survival. Moreover, we show that the VirB system mediates cytostatic and cytotoxic effects at high bacterial titres, which interfere with a potent VirB-independent mitogenic activity. We conclude that the VirB T4SS is a major virulence determinant of B. henselae, required for targeting multiple endothelial cell functions exploited by this vasculotropic pathogen.  相似文献   

3.
Bartonella species were virtually unrecognized as modern pathogens of humans until the last decade. However, identification of Bartonella species as the agents of cat-scratch disease, bacillary angiomatosis, urban trench fever, and possible novel presentations of Carrion's disease has left little doubt of the emerging medical importance of this genus of organisms. The three primary human pathogenic bartonellae, Bartonella bacilliformis (Carrion's disease), B. henselae (cat-scratch disease), and B. quintana (trench fever), present noteworthy comparisons in the epidemiology, natural history, pathology, and host-microbe interaction that this review will briefly explore.  相似文献   

4.
Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin endothelial cells might induce their growth and ultimately lead to bacillary angiomatosis formation.  相似文献   

5.
6.
The zoonotic pathogen Bartonella henselae ( Bh ) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh . Spheroids generated from Bh -infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh -induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella - induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.  相似文献   

7.
Bartonella henselae is present in a wide range of wild and domestic feline hosts and causes cat-scratch disease and bacillary angiomatosis in humans. We have estimated here the gene content of Bartonella koehlerae, a novel species isolated from cats that was recently identified as an agent of human endocarditis. The investigation was accomplished by comparative genomic hybridization (CGH) to a microarray constructed from the sequenced 1.93-Mb genome of B. henselae. Control hybridizations of labeled DNA from the human pathogen Bartonella quintana with a reduced genome of 1.58 Mb were performed to evaluate the accuracy of the array for genes with known levels of sequence divergence. Genome size estimates of B. koehlerae by pulsed-field gel electrophoresis matched that calculated by the CGH, indicating a genome of 1.7 to 1.8 Mb with few unique genes. As in B. quintana, sequences in the prophage and the genomic islands were reported absent in B. koehlerae. In addition, sequence variability was recorded in the chromosome II-like region, where B. koehlerae showed an intermediate retention pattern of both coding and noncoding sequences. Although most of the genes missing in B. koehlerae are also absent from B. quintana, its phylogenetic placement near B. henselae suggests independent deletion events, indicating that host specificity is not solely attributed to genes in the genomic islands. Rather, the results underscore the instability of the genomic islands even within bacterial populations adapted to the same host-vector system, as in the case of B. henselae and B. koehlerae.  相似文献   

8.
Bartonella henselae is a zoonotic pathogen that usually causes a self-limiting infection in immunocompetent individuals but often causes potentially life-threatening infections, such as bacillary angiomatosis, in immunocompromised patients. Both diagnosis of infection and research into the molecular mechanisms of pathogenesis have been hindered by the absence of a suitable liquid growth medium. It has been difficult to isolate B. henselae directly from the blood of infected humans or animals or to grow the bacteria in liquid culture media under laboratory conditions. Therefore, we have developed a liquid growth medium that supports reproducible in vitro growth (3-h doubling time and a growth yield of approximately 5 x 10(8) CFU/ml) and permits the isolation of B. henselae from the blood of infected cats. During the development of this medium, we observed that B. henselae did not derive carbon and energy from the catabolism of glucose, which is consistent with genome nucleotide sequence data suggesting an incomplete glycolytic pathway. Of interest, B. henselae depleted amino acids from the culture medium and accumulated ammonia in the medium, an indicator of amino acid catabolism. Analysis of the culture medium throughout the growth cycle revealed that oxygen was consumed and carbon dioxide was generated, suggesting that amino acids were catabolized in a tricarboxylic acid (TCA) cycle-dependent mechanism. Additionally, phage particles were detected in the culture supernatants of stationary-phase B. henselae, but not in mid-logarithmic-phase culture supernatants. Enzymatic assays of whole-cell lysates revealed that B. henselae has a complete TCA cycle. Taken together, these data suggest B. henselae may catabolize amino acids but not glucose to derive carbon and energy from its host. Furthermore, the newly developed culture medium should improve isolation of B. henselae and basic research into the pathogenesis of the bacterium.  相似文献   

9.
Human pathogenic Bartonella henselae cause cat scratch disease and vasculoproliferative disorders (e.g. bacillary angiomatosis). Expression of Bartonella adhesin A (BadA) is crucial for bacterial autoagglutination, adhesion to host cells, binding to extracellular matrix proteins and proangiogenic reprogramming via activation of hypoxia inducible factor (HIF)-1. Like the prototypic Yersinia adhesin A, BadA belongs to the class of trimeric autotransporter adhesins and is constructed modularly consisting of a head, a long and repetitive neck-stalk module and a membrane anchor. Until now, the exact biological role of these domains is not known. Here, we analysed the function of the BadA head by truncating the repetitive neck-stalk module of BadA (B. henselae badA(-)/pHN23). Like B. henselae Marseille wild type, B. henselae badA(-)/pHN23 showed autoagglutination, adhesion to collagen and endothelial cells and activation of HIF-1 in host cells. Remarkably, B. henselae badA(-)/pHN23 did not bind to fibronectin (Fn) suggesting a crucial role of the deleted stalk domain in Fn binding. Additionally, the recombinantly expressed BadA head adhered to human umbilical vein endothelial cells and to a lesser degree to epithelial (HeLa 229) cells. Our data suggest that the head represents the major functional domain of BadA responsible for host adhesion and angiogenic reprogramming.  相似文献   

10.
Recently, a novel 'two-step' model of pathogenicity has been described that suggests host-cell-derived vasculoproliferative factors play a crucial role in the pathogenesis of bacillary angiomatosis, a disease caused by the human pathogenic bacterium Bartonella henselae. The resulting proliferation of endothelial cells could be interpreted as bacterial pathogens triggering the promotion of their own habitat: the host cell. Similar disease mechanisms are well known in the plant pathogen Agrobacterium tumefaciens, which causes crown gall disease. There are notable similarities between the pathogenicity of A. tumefaciens leading to tumourous disease in plants and to the B. henselae-triggered proliferation of endothelial cells in humans. Here, we hypothesize that this pathogenicity strategy might be common to several bacterial species in different hosts owing to shared pathogenicity factors.  相似文献   

11.
Bacillary angiomatosis is a bacterial disease which affects mainly immunosuppressed patients. It may compromise any tissue, especially the skin, presenting papules, nodules or angiomatous tumors. We studied three young men with AIDS, all of them with 1-2 papules, nodules or subcutaneous tumors suggesting telangiectatic granuloma, sarcoma and lipoma. Microscopically, they were misdiagnosed as telangiectatic granuloma, Kaposi's sarcoma and "angioma with secondary inflammation". After reviewing the histopathology, we saw them to be composed by vessels with prominent endothelium and stroma rich in leukocytoclastic polymorphonuclears. Fibrinoid deposits were observed in the neighborhood of vessels as well as minute eosinophilic granular interstitial masses corresponding to Bartonella aggregates, criteria which answer to the diagnosis of bacillary angiomatosis with HE staining. The Warthin-Starry stain was not useful; using resin embedded tissue from paraffin-embedded material, bacterial clusters, both in semithin section stained with toluidine blue and in thin sections observed under the electron microscope, were clearly seen, confirming bacillary angiomatosis diagnosis. Patients were successfully treated with surgery and either erythromycin or doxycycline. We reviewed the entity as well as its differential diagnoses with telangiectatic granuloma, Kaposi's sarcoma, Carrión's disease, and cat-scratch disease. In conclusion, we showed the presence of bacillary angiomatosis in three patients, illustrated its typical histopathological appearance with HE staining and demonstrated the causal bacteria in thick sections and with the electron microscope. It is essential to recognize bacillary angiomatosis, as it can be cured with antibiotics.  相似文献   

12.
Bartonella henselae is a slow-growing microorganism and the causative pathogen of bacillary angiomatosis in man. Here, we analysed how interaction of B. henselae with endothelial cells might affect bacterial growth. For this purpose, bacterial rRNA production and ribosome content was determined by fluorescence in situ hybridization (FISH) using rRNA-targeted fluorescence-labelled oligonucleotide probes. B. henselae grown on agar plates showed no detectable rRNA content by means of FISH, whereas B. henselae co-cultured with endothelial cells showed a rapid increase of rRNA production within the first 18 h after inoculation. The increased rRNA synthesis was paralleled by a ∼1000-fold intracellular bacterial replication, whereas bacteria grown on agar base showed only a ∼10-fold replication within the first 48 h of culture. Pretreatment of host cells with paraformaldehyde prevented adhesion, invasion, intracellular replication and bacterial rRNA synthesis of B. henselae . In contrast, inhibition of host cell protein synthesis by cycloheximide did not affect bacterial adhesion and invasion, but prevented intracellular replication although bacterial rRNA content was increased. Inhibition of actin polymerization by cytochalasin D did not affect adhesion, invasion, increased rRNA content or intracellular replication of B. henselae. These results demonstrate that rRNA synthesis and replication of B. henselae is promoted by viable host cells with intact de novo protein synthesis.  相似文献   

13.
The Gram‐negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae – each displaying multiple functions in host cell interaction – have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that mostisolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4‐dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA‐dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of Bartonella.  相似文献   

14.
《Genomics》2020,112(1):467-471
Bartonella henselae is a facultative intracellular pathogen that occurs worldwide and is responsible primarily for cat-scratch disease in young people and bacillary angiomatosis in immunocompromised patients. The principal source of genome-level diversity that contributes to B. henselae's host-adaptive features is thought to be horizontal gene transfer events. However, our analyses did not reveal the acquisition of horizontally-transferred islands in B. henselae after its divergence from other Bartonella. Rather, diversity in gene content and genome size was apparently acquired through two alternative mechanisms, including deletion and, more predominantly, duplication of genes. Interestingly, a majority of these events occurred in regions that were horizontally transferred long before B. henselae's divergence from other Bartonella species. Our study indicates the possibility that gene duplication, in response to positive selection pressures in specific clones of B. henselae, might be linked to the pathogen's adaptation to arthropod vectors, the cat reservoir, or humans as incidental host-species.  相似文献   

15.
Bartonella henselae (Bh) is a worldwide distributed zoonotic pathogen. Depending on the immune status of the infected individual this bacterium can cause a wide spectrum of clinical manifestations, ranging from cat scratch disease (CSD) to bacillary angiomatosis (BA) and bacillary peliosis (BP). BA and BP are characterized by tumor-like lesions at the skin or in the inner organs, respectively. These structures display pathological sprouting of capillaries with enlarged and hyperproliferated vascular endothelial cells (ECs) that are frequently found in close association with bacteria. Here we review the cellular changes observed upon Bh infection of ECs in vitro and outline the role of the VirB type IV secretion system (T4SS) and its translocated effector proteins in the modulation of EC signalling cascades. The current model how this virulence system could contribute to the vasoproliferative activity of Bh is described.  相似文献   

16.
Bacillary angiomatosis (BA) is a reactive vasoproliferative lesion occurring almost exclusively in immunocompromised individuals in response to infection by a bacillus closely related to Rochalimaea quintana. The commonest site of involvement is the skin, in the form of multiple erythematous nodules, but bacillary angiomatosis can also present in a wide variety of sites such as soft tissues, bone, lymph node, liver and spleen. Some patients may present with persistent fever and bacteraemia. Bacillary angiomatosis is characterized histologically by proliferation of blood vessels lined by plump endothelium, associated with an interstitial eosinophilic or amphophilic material formed by aggregated bacilli, best demonstrated by the Warthin-Starry stain. A heavy infiltrate of neutrophils is frequently, but not invariably, present. In the liver and spleen, there may be in addition features of peliosis. It is important to be able to diagnose bacillary angiomatosis correctly because prompt treatment with antibiotics is potentially life-saving.  相似文献   

17.
Bartonella henselae, the agent of cat-scratch disease and vasculoproliferative disorders in humans, is a fastidious facultative intracellular pathogen, whose interaction with macrophages and endothelial cells (ECs) is crucial in the pathogenesis of these diseases. However, little is known about the subcellular compartment in which B. henselae resides. Two hours after infection of murine macrophages and human ECs, the majority of B. henselae-containing vacuoles (BCVs) lack typical endocytic marker proteins, fail to acidify, and do not fuse with lysosomes, suggesting that B. henselae resides in a non-endocytic compartment. In contrast to human umbilical vein endothelial cells, bacterial death and lysosomal fusion with BCVs is apparent in J774A.1 macrophages at 24 h. This phenomenon of delayed lysosomal fusion requires bacterial viability, and is confined to the BCV itself. Using magnetic selection, we enriched for transposon-mutagenized B. henselae trapped in lysosomes of macrophages 2 h after infection. Genes affected appear to be relevant to the intracellular lifestyle in macrophages and ECs and include some previously implicated in Bartonella pathogenicity. We conclude that B. henselae has a specific capacity to actively avoid the host endocytic pathway after entry of macrophages and ECs, from within a specialized non-endocytic membrane-bound vacuole.  相似文献   

18.
The contribution of myeloid cells to tumour microenvironments is a decisive factor in cancer progression. Tumour‐associated macrophages (TAMs) mediate tumour invasion and angiogenesis through matrix remodelling, immune modulation and release of pro‐angiogenic cytokines. Nothing is known about how pathogenic bacteria affect myeloid cells in these processes. Here we show that Bartonella henselae, a bacterial pathogen causing vasculoproliferative diseases (bacillary angiomatosis), reprogrammes human myeloid angiogenic cells (MACs), a pro‐angiogenic subset of circulating progenitor cells, towards a TAM‐like phenotype with increased pro‐angiogenic capacity. B. henselae infection resulted in inhibition of cell death, activation of angiogenic cellular programmes and induction of M2 macrophage polarization. MACs infected with B. henselae incorporated into endothelial sprouts and increased angiogenic growth. Infected MACs developed a vascular mimicry phenotype in vitro, and expression of B. henselae adhesin A was essential in inducing these angiogenic effects. Secretome analysis revealed that increased pro‐angiogenic activities were associated with the creation of a tumour‐like microenvironment dominated by angiogenic inflammatory cytokines and matrix remodelling compounds. Our results demonstrate that manipulation of myeloid cells by pathogenic bacteria can contribute to microenvironmental regulation of pathological tissue growth and suggest parallels underlying both bacterial infections and cancer.  相似文献   

19.
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号