首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
North African odonates are facing conservation challenges, not only by increased degradation and loss of habitat, but also by having poorly understood taxonomy. Coenagrion puella is a widely distributed damselfly but there is debate about the taxonomic status of North African populations, where the species is very rare. We evaluate the genetic distinctiveness of North African C. puella using mitochondrial and nuclear genetic markers. We found a clear genetic differentiation between North African and European populations (3.4 % mtDNA) and a lack of shared haplotypes between individuals from the two continents. These results suggest that the damselfly C. puella comprises two genetically distinct phylogenetic lineages: one in Europe and one in North Africa, and re-invigorate the debate on the validity of the North African endemic C. puella kocheri. We propose that these two lineages of C. puella should be managed as distinct molecular operational taxonomic units. More generally, this study reinforces the important role of North Africa as centre of speciation and differentiation for odonates, and highlights the relevance of incorporating genetic data to understand the evolutionary history and taxonomy for effective biodiversity conservation.  相似文献   

2.
Freeland  Joanna R.  Conrad  Kelvin F. 《Hydrobiologia》2002,479(1-3):69-73
In the first half of this century, seven species of the damselfly genus Coenagrion regularly bred in Britain. Since that time, two of these species have become extinct, and three currently have highly restricted distributions. Of the remaining two species, the Azure Damselfly (C. puella) is both common and abundant, but the Variable Damselfly (C. pulchellum), while more common than most Coenagrion species, is experiencing a national decline in Britain. The reasons for the decline of C. pulchellum are poorly understood, and therefore its future in Britain is difficult to predict. The aim of this study was to investigate genetic relationships among populations of C. puella and C. pulchellum. We obtained mitochondrial sequence data from 36 C. puella and C. pulchellum individuals collected from five different sites across central England. These revealed three haplotypes with high overall similarity. Hybridisation between C. puella and C. pulchellum was suggested by (1) The sharing of a haplotype between C. puella and C. pulchellum, and (2) The fact that morphological characters of sympatric C. puella and C. pulchellum populations are not always species-specific. More research is required before we can determine whether or not hybridisation is playing a role in the decline of Coenagrion species in the U.K.  相似文献   

3.
Hybridisation between an endangered species and a more common species can facilitate population decline and extinction of the endangered species due to wasted reproductive effort, outbreeding depression and/or swamping of alleles due to widespread or complete admixture. The Chatham Island black robin (Petroica traversi) is an endangered songbird species, which was reduced to only five individuals in 1980. Intensive cross-fostering, whereby black robin offspring were placed into nests of the closely related Chatham Island tomtit (Petroica macrocephala chathamensis) to increase reproductive output, contributed to the rapid recovery of the species within 10 years. Several hybridisation events occurred and although those hybrids were successfully eliminated from the population, concerns remained for the possibility of introgression between the two species that may have gone unnoticed. In this study, we genotyped seven microsatellite loci in both species from the two islands where they coexist, to assess the level of hybridisation and the extent of introgression between the two species. The two species shared no alleles at five of the seven loci genotyped, and cluster analysis, AMOVA and admixture analysis of a total of 174 black robins and 78 Chatham Island tomtits showed no evidence of hybridisation or introgression on either of the two islands where they co-exist. As a result, there is no evidence that black robins are currently in any danger of population decline or extinction through hybridisation with tomtits, although small population size and skewed sex ratio, particularly in the smaller of the two populations, may facilitate future hybridisation events.  相似文献   

4.
Cupressus chenggiana S. Y. Hu (Cupressaceae) is an endemic and endangered conifer species in southwest China. In order to study the population genetics and design the effective conservation methods, we aimed to develop microsatellite primers for this species in the present study. We developed eight new microsatellite loci for this species through biotin capture method. Polymorphism of each locus was further assessed in 18 individuals from three geographically distant populations. The number of alleles per locus ranged from 6 to 11 with an average of 8.13. The observed and expected heterozygosities ranged from 0.219 to 0.296 and from 0.374 to 0.470, with averages of 0.254 and 0.417, respectively. We further found that three of nine microsatellite loci developed previously for another congeneric species showed polymorphic banding patters. We performed primer-crossing tests of these loci in the other two congeneric species which are closely related to C. chenggiana (C. gigantea and C. duclouxiana). These microsatellite markers would be effective for analyzing genetic diversity and population genetic structure of this species and its morphological differentiation with the close relatives.  相似文献   

5.
6.
The amago salmon, Oncorhynchus masou ishikawae, is an endemic subspecies of O. masou in Japan. Owing to the extensive stocking of hatchery fish throughout Japan, indigenous populations of O. m. ishikawae are now on the verge of extinction. We examined the genetic effects of stocking hatchery fish on wild populations in the River Koza, Japan, using microsatellite and mitochondrial DNA (mtDNA) markers. For mtDNA, haplotype mt1, which is common in wild populations, was present exclusively in isolated wild populations assumed to be unaffected by previous stocking, while it was never observed in hatchery fish. Genetic diversity was much higher in wild populations in the stocked area, which shared many mtDNA haplotypes with hatchery fish, than in isolated wild populations with haplotype mt1. Pairwise F ST estimates based on microsatellites showed significant differentiation among the isolated populations with many microsatellite loci monomorphic. Significant deviation from Hardy–Weinberg equilibrium was observed in wild populations in the area subject to stocking, where a Bayesian-based assignment test showed a high level of introgression with hatchery fish. These results suggest that wild populations with haplotype mt1, which became isolated through anthropogenic environmental change in the 1950–1960s, represent indigenous populations of O. m. ishikawae in the River Koza. They have low genetic diversity, most likely caused by genetic bottlenecks following damming and environmental deterioration, while stocking of hatchery fish over the past 30 years apparently had a large impact on the genetic structure of wild populations in the main channel of the River Koza.  相似文献   

7.
Numerous arthropod species are genetically differentiated across their distribution area. Diversifying the geographical origins of a biocontrol agent species can be used to favour their perennial establishment by the sampling of pre-adapted genotypes and/or the production of new genotypes through hybridization. Hybridization can be nevertheless challenged by reproductive isolations induced by some common microbial endosymbionts. In this study, we aimed at characterizing (i) the genetic diversity of six populations of Psyttalia lounsburyi (Hymenoptera: Braconidae), a candidate biocontrol agent of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae) and (ii) the diversity of their Wolbachia endosymbionts. Both mitochondrial and microsatellite markers evidence clustering between the South African population and several Kenyan/Namibian populations. The survey of the Wolbachia also distinguished two main variants with a spatial heterogeneity in the infection status. All these results are discussed in the context of the use of these P. lounsburyi populations for hybridization and further field releases.  相似文献   

8.
The significance of the taxonomic distinction of two species of Blackbutt was studied by analysing patterns of genetic (microsatellite markers; n = 13) and phenetic (capsule morphology) differentiation. Analysis of genetic structure using a Bayesian modelling approach on range-wide samples of both taxa (n = 457) showed the major division was within the more widely distributed species, Eucalyptus pilularis, and not aligned with taxonomy. Comparisons of intra- and inter-taxon genetic differentiation in paired-samples of taxa from each of four locations spanning the distribution of the more restricted E. pyrocarpa, showed that around twice as much variation was found among locations within taxa, than between taxa. Despite the lack of differentiation at effectively neutral microsatellite markers, significant phenetic differences (including capsule size) were evident between taxa at most sites. A landscape mosaic of taxa, coincident with changes in elevation, vegetation and soil types, suggested some phenetic differences were probably adaptive and spatial differentiation was stabilised by environmental factors. An absence of morphological intermediates and a lack of correlation in the rankings of locus inter-taxon differentiation (PhiBT) across locations, was consistent with parapatric origins for E. pyrocarpa. We conclude the taxa are at the lower end of the speciation spectrum and might best be viewed as ecotypes, divergent in evolutionary potential, but with genomes broadly permeable to inter-taxa gene flow. Gene exchange between plantings of E. pilularis and nearby E. pyrocarpa forest is likely as the two taxa appear to have few barriers to reproduction.  相似文献   

9.
Ren Z  Zhu B  Wang D  Ma E  Su D  Zhong Y 《Genetica》2008,132(1):103-112
Most of our current understanding of comparative population structure has been come from studies of parasite–host systems, whereas the genetic comparison of gallnut-aphids and their host-plants remain poorly documented. Here, we examined the population genetic structure of the Chinese sumac aphid Schlechtendalia chinensis and its unique primary host-plant Rhus chinensis in a mountainous province in western China using inter-simple sequence repeat (ISSR) markers. Despite being sampled from a mountainous geographic range, analysis of molecular variance (AMOVA) showed that the majority of genetic variation occurred among individuals within populations of both the aphid and its host. The aphid populations were found to be structured similarly to their primary host populations (F ST values were 0.239 for the aphid and 0.209 for its host), suggesting that there are similar patterns of gene flow between the populations of the aphid and between populations of its host-plant. The genetic distances (F ST/1 − F ST) between the aphid populations and between its host-plant populations were uncorrelated, indicating that sites with genetically similar host-plant populations may not always have genetically similar aphid populations. The lack of relationships between genetic and geographical distance matrices suggested that isolation by distance (IBD) played a negligible role at this level. This may be mainly attributed to the founder effect, genetic drift and the relative small spatial scale between populations. Zhumei Ren and Bin Zhu contributed equally to this work.  相似文献   

10.
Galium catalinense (Rubiaceae) is a perennial shrub consisting of two subspecies endemic to California’s Channel Islands: Galium catalinense subsp. catalinense on Santa Catalina Island, and G. catalinense subsp. acrispum, a state-endangered taxon on San Clemente Island. A long history of overgrazing by introduced herbivores has contributed to population declines in G. catalinense subsp. acrispum. We surveyed 12 populations throughout the taxon’s range for genetic variation using eight polymorphic microsatellite loci to determine the genetic impact of this demographic bottleneck. At the taxon level, 65 alleles were identified with an average of 8.1 alleles per locus, although many alleles were rare; the effective number of alleles per locus averaged 2.6. Expected heterozygosity was 0.550. Individual populations had between six and eight polymorphic loci, with expected heterozygosities ranging from 0.36 to 0.60, and effective numbers of alleles ranging from 1.8 to 3.5 per locus. Populations fell into three or four genetic clusters, depending on type of analysis, which may represent refugia where the populations persisted during intense herbivory. There is little evidence of genetic bottlenecks or substantial inbreeding within populations. These findings, coupled with indications of recent migration between populations, suggest that G. catalinense subsp. acrispum is currently unlikely to be endangered by genetic factors, but small population sizes make the taxon vulnerable to future loss of genetic diversity. Management strategies based on these genetic data, population sizes, and the spatial distribution of populations are discussed.  相似文献   

11.
Artificial interspecific hybrids between large scale loach P. dabryanus and tetraploid pond loach M. anguillicaudatus (Cobitidae, Cypriniformes) are viable. To detect the occurrence of possible natural hybridization, genetic analyses by using microsatellite markers were performed for natural populations of large scale loach and pond loach, the reciprocal laboratory hybrids, and “supposed hybrids” with ambiguous morphology. The fertility of the artificial hybrids was also tested. At one diagnostic microsatellite (Mac50), one out of 20 “supposed hybrids” was identified to be F1 hybrid between the two loach species because it had the same genotype as that of the laboratory hybrids. The triploid hybrids between the two species were confirmed to be female-sterile. The results show that rare hybridization has occurred between diploid large scale loach and tetraploid pond loach in nature although it may have little effect in genetic introgression. This study is helpful for fish conservation and encourages further investigation on natural hybridization and introgression of loaches.  相似文献   

12.
The variation of a sample of rainbow trout (Parasalmo (Oncorhynchus) mykiss) from natural populations of several rivers of the Kamchatka Peninsula with respect to 43 microsatellite DNA loci has been studied. These loci were earlier used for analysis of Asian populations of closely related salmonids. Ten of them may be regarded as markers and seen promising for further studies on intraspecific relationships of rainbow trout of Kamchatka. Their use in studies on more numerous samples from different localities and populations of Parasalmo (O.) mykiss in the Asian part of the species range will ensure efficient population genetic analysis of the Kamchatka population group of this species.  相似文献   

13.
Understanding the amount and distribution of genetic diversity in natural populations can inform the conservation strategy for the species in question. In this study, genetic variation at eight nuclear microsatellite loci was used to investigate genetic diversity and population structure of wild litchi (Litchi chinensis Sonn. subsp. chinensis). Totally 215 individuals were sampled, representing nine populations of wild litchi. All eight loci were polymorphic, with a total of 51 alleles. The expected heterozygosity in the nine populations ranged from 0.367 to 0.638 with an average value of 0.526. Inbreeding within wild litchi populations was indicated by a strong heterozygote defect. Significant bottleneck events were detected in the populations from Yunnan and Vietnam, which could be responsible for lower levels of genetic diversity in these populations. Measures of genetic differentiation (F ST = 0.269) indicated strong differentiation among wild litchi populations. Significant correlation was found between genetic differentiation and geographical distance (r = 0.655, P = 0.002), indicating a strong isolation by distance in these populations. Bayesian clustering suggested genetic separation among three regional groups, namely, the western group, the central group and the eastern group. Some conservation strategies for wild litchi populations were also proposed based on our results.  相似文献   

14.
Eotetranychus carpini (Oudemans) is an important pest of grapevine (Vitis vinifera L.) in southern Europe. This mite is also found on a number of different plants, including Carpinus betulus L., which commonly occurs in stands and hedgerows bordering vineyards, where it may serve as a potential mite reservoir. The economic importance of this pest has motivated a number of studies aimed at investigating whether the mites found on V. vinifera and C. betulus are conspecific. The results obtained to date have been inconclusive. In this study, we used biological and molecular approaches to investigate this issue. First, we conducted host-switch experiments to test the ability of E. carpini to develop on an alternative host plant, using mite populations originally collected on either C. betulus or V. vinifera plants from the same area. Second, we investigated DNA-based differentiation using nucleotide sequences of the ITS1-5.8S-ITS2 region of the ribosomal DNA of individual E. carpini from the populations examined in our host-plant experiments. We also analyzed sequences of individuals collected in other regions (Italy and Slovenia) to estimate species variation. The results from our host-switch experiments suggest the differentiation of mites collected on the two hosts. Mites collected from C. betulus did not survive and reproduce on V. vinifera and vice versa. Our molecular work revealed significant genetic differentiation between the mites collected from the two hosts, but no evidence of genetic variation among specimens collected from the same host species. Our results indicate the existence of host races of E. carpini.  相似文献   

15.
Little is known about the population ecology of the recently described bottlenose dolphin species Tursiops australis. The classification of this species is still under debate, but this putative species is thought to be comprised of small and genetically distinct populations (including sub-populations under increasing anthropogenic threats) and is likely endemic to coastal southern Australia. Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci were used to assess genetic variation and hierarchical population structure of coastal T. cf. australis across a range of spatial scales and environmental discontinuities between southern Western Australia (WA) and central South Australia (SA). Overall, genetic diversity was similar to that typically found for bottlenose dolphins, although very low mtDNA diversity was found in Gulf St. Vincent (GSV) dolphins. We found historical genetic subdivision and likely differences in colonisation between GSV and Spencer Gulf, outer- and inner-gulf locations, and SA/WA and previously identified Victorian/Tasmanian populations. A hierarchical metapopulation structure was revealed along southern Australia, with at least six genetic populations occurring between Esperance, WA and southern Tasmania. In addition, fine-scale genetic subdivision was observed within each SA/WA population. In general, contemporary migration was limited throughout southern Australia, but an important gene flow pathway was identified eastward along the Great Australian Bight. Management strategies that promote gene flow among populations should be implemented to assist with the maintenance of the inferred metapopulation structure. Further research into the population ecology of this species is needed to facilitate well-informed management decisions.  相似文献   

16.
Li ZX  Lin HZ  Guo XP 《Current microbiology》2007,54(6):467-471
Wolbachia are obligate intracellular bacteria present in reproductive tissues of many arthropod species. It has been reported that few silverleafing populations of Bemisia tabaci were positive for Wolbachia, whereas non-silverleafing populations were more likely infected with Wolbachia and all that infect B. tabaci are Wolbachia belonging to supergroup B. However, current detection methods were shown to be not sensitive enough to uncover all infections. Herein, a protocol based on polymerase chain reaction–restriction fragment length polymorphism analysis of Wolbachia 16S ribosomal DNA is presented. A systematic survey for the prevalence of Wolbachia infection in natural populations of B. tabaci using this method revealed that (1) all populations of B. tabaci tested positive for Wolbachia and the overall infection rate reached 80.5% (293 positives in 364 tests); (2) both single infection and superinfection existed within individual whiteflies tested; and (3) silverleafing populations of B. tabaci most likely harbored A Wolbachia as single infection, whereas non-silverleafing populations tend to carry B Wolbachia as superinfection. It is clear that the Wolbachia infection pattern is closely related to the genetic races of B. tabaci, and the infection frequencies are apparently much higher than those described previously. This study shows that detection methods can significantly influence estimation of Wolbachia infection. It is supposed that Wolbachia may be acting as a biotic agent promoting rapid differentiation and speciation of B. tabaci. This is the most systematic survey of Wolbachia infection within B. tabaci.  相似文献   

17.
Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and Populus deltoides have contributed to many interspecific hybrids, which have been planted in large numbers. As these Populus x canadensis clones have the possibility to intercross with wild P. nigra trees, their offspring could establish themselves along European rivers. In this study, we have sampled 44 poplar seedlings and young trees that occurred spontaneously along the Rhine river and its tributaries in the Netherlands. Along these rivers, only a few native P. nigra L. populations exist in combination with many planted cultivated P. x canadensis trees. By comparison to reference material from P. nigra, P. deltoides and P. x canadensis, species-specific AFLP bands and microsatellite alleles indicated that nearly half of the sampled trees were not pure P. nigra but progeny of natural hybridisation that had colonised the Rhine river banks. The posterior probability method as implemented in NewHybrids using microsatellite data was the superior method in establishing the most likely parentage. The results of this study indicate that offspring of hybrid cultivated poplars compete for the same ecological niche as native black poplars. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

18.
Commiphora wightii is a medicinally important endangered species endemic to the Thar Desert of Rajasthan, India and adjoining areas of Pakistan. The populations of this species are declining sharply because of its extensive use as a natural herb. Random amplified polymorphic DNA analysis was conducted to find the genetic variation among 7 populations of C. wightii. Of the 100 random primers screened, 44 primers yielded 220 loci. Statistical analysis indicated low genetic diversity (H pop = 0.0958; I = 0.1498; mean polymorphic loci = 14.28%), and high genetic differentiation among the populations (G ST = 0.3990; AMOVA Φ ST of 0.3390; Bayesian θ (II) = 0.3002). The low genetic diversity may be due to geographic isolation and restricted gene flow (N m = 0.7533) between the fragmented populations. Unsustainable utilization of the plant has fragmented the population continuum which served the purpose of genetic exchange between populations. Mantel’s test was performed which revealed a highly significant positive correlation between genetic and geographic distance (r 2 = 0.614, P = 0.023) among the populations studied. Low variation can also be attributed to poor seed setting and the slow growth pattern of the species, which is also an apomict. In UPGMA dendrogram the Commiphora wightii samples were divided into two major and one minor cluster. These findings can serve as a guide to preserving the genetic resources of this medicinal plant species.  相似文献   

19.
The island of St Helena in the South Atlantic Ocean has a rich endemic flora, with 10 endemic genera and 45 recognised endemic species. However, populations of most endemic species have undergone dramatic reductions or extinction due to over-exploitation, habitat destruction and competition from invasive species. Consequently, endemic species are likely to have lost genetic variation, in some cases to extreme degrees. Here, the entire extant wild populations and all planted trees in seed orchards, of two critically endangered species in the endemic genus Commidendrum (Asteraceae), C. rotundifolium and C. spurium, were sampled to assess levels of genetic variation and inbreeding. Six new microsatellite loci were developed from next-generation sequence data, and a total of 190 samples were genotyped. Some seed orchard trees contained alleles from both wild C. rotundifolium and C. spurium indicating they could be hybrids and that some backcrossing may have occurred. Some of these trees were more similar to C. rotundifolium than C. spurium both genetically and morphologically. Importantly, allelic variation was detected in the putative hybrids that was not present in wild material. C. rotundifolium is represented by just two individuals one wild and one planted and C. spurium by seven, therefore the seed orchard trees comprise an important part of the total remaining genetic diversity in the genus Commidendrum.  相似文献   

20.
Castilleja levisecta (Scrophulariaceae), the golden paintbrush, is an insect-pollinated herbaceaous perennial found in the Pacific Northwest. Currently restricted to two island populations off British Columbia and nine populations (eight on islands) in Washington, C. levisecta is a rare species threatened with extinction. Allozymes were used to describe genetic diversity and structure in these eleven populations. Despite its threatened status and small geographic range, exceptionally high levels of genetic diversity are maintained within C. levisecta. All sixteen of the loci resolved were polymorphic within the species (Ps=100%), while the mean percentage of loci polymorphic within populations (Pp) was 65.7%. The mean number of alleles per polymorphic locus (APs) was 2.94 within the species and averaged 2.38 within populations (APp). Genetic diversity (Hes) was 0.285 for the species, whereas mean population genetic diversity (Hep) was 0.213. Smaller populations had, on average, fewer observed alleles and less genetic diversity. A significant negative correlation (r = –0.72) was found between genetic identity and geographic distance, indicating reduced gene flow between distant populations. The most geographically isolated population was one of the larger populations, one of the most genetically diverse and the most genetically divergent. A wide range of pairwise population genetic identities (I = 0.771 – 0.992) was found, indicating considerable genetic divergence between some populations. Overall, 19% of the total genetic diversity was distributed among populations. Results of this survey indicate that genetic augmentation of existing populations is unnecessary. The high allelic diversity found for the species and within its populations holds promise for conservation and restoration efforts to save this rare and threatened plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号