首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion mutants of the two proteins to interact directly, suggesting that an interaction between the RS-domain of ASF/SF2 and a region between amino acid residues 208-735 on topoisomerase I accounts for the observed effect. Consistently, phosphorylation of the RS-domain with either topoisomerase I or a human cell extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors.  相似文献   

2.
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.  相似文献   

3.
Protoberberines represent a structural class of organic cations that induce topoisomerase I-mediated DNA cleavage, a behavior termed topoisomerase I poisoning. We have employed a broad range of biophysical, biochemical, and computer modeling techniques to characterize and cross-correlate the DNA-binding and topoisomerase poisoning properties of four protoberberine analogues that differ with respect to the substituents on their A- and/or D-rings. Our data reveal the following significant features: (i) The binding of the four protoberberines unwinds duplex DNA by approximately 11 degrees, an observation consistent with an intercalative mode of interaction. (ii) Enthalpically favorable interactions, such as stacking interactions between the intercalated ligand and the neighboring base pairs, provide <50% of the thermodynamic driving force for the complexation of the protoberberines to duplex DNA. Computer modeling studies on protoberberine-DNA complexes suggest that only rings C and D intercalate into the host DNA helix, while rings A and B protrude out of the helix interior into the minor groove. (iii) All four protoberberine analogues are topoisomerase I-specific poisons, exhibiting little or no topoisomerase II poisoning activity. (iv) Modifications of the D-ring influence both DNA binding and topoisomerase I poisoning properties. Specifically, transference of a methoxy substituent from the 11- to the 9-position diminishes both DNA binding affinity and topoisomerase I poisoning activity, an observation suggesting that DNA binding is important in the poisoning of topoisomerase I by protoberberines. (v) Modifications of the A-ring have a negligible impact on DNA binding affinity, while exerting a profound influence on topoisomerase I poisoning activity. Specifically, protoberberine analogues containing either 2,3-dimethoxy; 3,4-dimethoxy; or 3, 4-methylenedioxy substituents all bind DNA with a similar affinity. By contrast, these analogues exhibit markedly different topoisomerase I poisoning activities, with these activities following the hierarchy: 3,4-methylenedioxy > 2,3-dimethoxy > 3, 4-dimethoxy. These differences in topoisomerase I poisoning activity may reflect the differing abilities of the analogues to interact with specific functionalities on the enzyme, thereby stabilizing the enzyme in its cleavable state. In the aggregate, our results are consistent with a mechanistic model in which both ligand-DNA and ligand-enzyme interactions are important for the poisoning of topoisomerase I by protoberberines, with the DNA-directed interactions involving ring D and the enzyme-directed interactions involving ring A. It is reasonable to suggest that the poisoning of topoisomerase I by a broad range of other naturally occurring and synthetic ligands may entail a similar mechanism.  相似文献   

4.
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.  相似文献   

5.
H Tamura  Y Ikegami  K Ono  K Sekimizu  T Andoh 《FEBS letters》1990,261(1):151-154
Inhibition of mammalian DNA topoisomerase I by phospholipids was investigated using purified enzyme. Acidic phospholipids inhibited the DNA relaxation activity of topoisomerase I whereas neutral phospholipid, phosphatidylethanolamine, did not. Accumulation of a protein-DNA cleavable complex, an intermediate which is known to accumulate upon inhibition by a specific inhibitor camptothecin, did not occur. The filter binding assay revealed that the DNA binding activity of the enzyme was inhibited by acidic phospholipids. Moreover, direct binding of phosphatidylglycerol to topoisomerase I was demonstrated. These results indicated that the inhibitory effect of acidic phospholipids on topoisomerase I was due to the loss of the DNA binding of the enzyme as a result of direct interaction between phospholipids and the enzyme.  相似文献   

6.
7.
Human topoisomerase I is a nuclear enzyme that catalyses DNA relaxation and phosphorylation of SR proteins. Topoisomerase I participates in several protein-protein interactions. We performed a proteomic analysis of protein partners of topoisomerase I. Two methods were applied to proteins of the nuclear extract of HeLa cells: a co-immunoprecipitation and an affinity chromatography combined with mass spectrometry. Complexes formed by topoisomerase I with its protein partners were immunoprecipitated by scleroderma anti-topoisomerase I antibodies. To identify binding sites for the protein partners, baits corresponding to fragments of topoisomerase I were constructed and used in the affinity chromatography. The N-terminal domain and the cap region of the core domain appeared to be the main regions that bound proteins. We identified 36 nuclear proteins that were associated with topoisomerase I. The proteins were mainly involved in RNA metabolism. We found 29 new and confirmed 7 previously identified protein partners of topoisomerase I. More than 40% proteins that associate with the cap region contain two closely spaced RRM domains. Docking calculations identified the RRM domains as a possible site for the interaction of these proteins with the cap region.  相似文献   

8.
9.
A DNA topoisomerase activity is found to be associated with the nucleosomes released by the Staphylococcal nuclease digestion of HeLa nuclei. Such an association is found to be salt dependent. A number of criteria have established that this DNA topoisomerase activity is due to HeLa topo I (Liu, L. F. and Miller, K. G. (1980) Proc. Natl. Acad. Sci. USA 78, 3489-3491). A similar association has been demonstrated from the in vitro studies using purified mononucleosomes and eukaryotic DNA topoisomerase I. Nonhistone HMG proteins and histone H1 are found to stimulate topoisomerase activity in vitro and form tight complexes with eukaryotic DNA topoisomerase I. The intimate interactions of topoisomerase I with chromosomal proteins and nucleosomes may be an essential feature of the topoisomerase function in vivo.  相似文献   

10.
p14ARF (ARF) and topoisomerase I play central roles in cancer and have recently been shown to interact. The interaction activates topoisomerase I, an important target for camptothecin-like chemotherapeutic drugs, but the regulation of the interaction is poorly understood. We have used the H358 and H23 lung cancer cell lines and purified recombinant human topoisomerase I to demonstrate that the ARF/topoisomerase I interaction is regulated by topoisomerase I serine phosphorylation, a modification that regulates topoisomerase I activity. Both cell lines express wild-type ARF and topoisomerase I proteins at equivalent levels, but H23 topoisomerase I, unlike that of H358 cells, is largely devoid of serine phosphorylation, has low activity, and complexes poorly with ARF. The ability of H23 topoisomerase I to complex with ARF can be restored by treatment with the serine kinase, casein kinase II. Consistent with these observations, we show that the response of H23 cells to camptothecin treatment is unaffected by changes in intracellular levels of ARF. However, in H358 and PC-3 cells, which express a serine phosphorylated topoisomerase I that complexes with ARF, ectopic overexpression of ARF causes sensitization to camptothecin, and siRNA-mediated down-regulation of endogenous ARF causes desensitization to camptothecin. These biological responses correlate with increased and decreased levels, respectively, of ARF/topoisomerase I complex and DNA-bound topoisomerase I. Thus, ARF is a serine phosphorylation-dependent coregulator of topoisomerase I in vivo, and it regulates cellular sensitivity to camptothecin by interacting with topoisomerase I. Certain cancer associated defects affecting ARF/topoisomerase I complex formation could contribute to cellular resistance to camptothecin.  相似文献   

11.
The Saccharomyces cerevisiae gene SGS1 encodes a DNA helicase that shows homology to the Escherichia coli protein RecQ and the products of the BLM and WRN genes in humans, which are defective in Bloom's and Werner's syndrome, respectively. Recently, it has been proposed that this helicase is involved in maintaining the integrity of the rDNA and that loss of Sgs1 function leads to accelerated aging. Sgs1 has been isolated on the basis of its genetic interaction with both topoisomerase I and topoisomerase III, as well as in a two-hybrid screen for proteins that interact with the C-terminal portion of topoisomerase II. We have defined the minimal structural elements of Sgs1 required for its interactions with the three topoisomerases, and demonstrate that the complex phenotypes associated with sgs1 mutants are a consequence of a dysfunctional Sgs1-Top3 complex. We also report that the synthetic relationship between mutations in SGS1 and SRS2, which encodes another helicase implicated in recombinational repair, likewise result from a dysfunctional Sgs1-Top3 interaction. Our findings indicate that Sgs1 may act on different DNA structures depending on the activity of topoisomerase I, Srs2 and topoisomerase III.  相似文献   

12.
DNA glycosylases play important roles in DNA repair in a variety of organisms, including humans. However, the function and regulation of these enzymes in the pathogenic bacterium Mycobacterium tuberculosis and related species are poorly understood. In the present study, the physical and functional interactions between 3-methyladenine DNA glycosylase (MAG) and topoisomerase I (TopA) in M. tuberculosis and M. smegmatis were characterized. MAG was found to inhibit the function of TopA in relaxing supercoiled DNA. In contrast, TopA stimulated the cleavage function of MAG on a damaged DNA substrate that contains hypoxanthine. The interaction between the two proteins was conserved between the two mycobacterial species. Several mutations in MAG that led to the loss of its interaction with and activity regulation of TopA were also characterized. The results of this study further elucidate glycosylase regulation in both M. smegmatis and M. tuberculosis.  相似文献   

13.
The papillomavirus (PV) E1 helicase plays a direct role in recruiting cellular DNA replication factors, such as replication protein A or polymerase alpha-primase, to replicate PV genomes. Here, E1 is shown to bind to human topoisomerase I and stimulate its relaxation activity up to sevenfold. The interaction between E1 and topoisomerase I was mapped to the E1 DNA binding domain and C terminus. These findings imply a mechanism for the recruitment of topoisomerase I to PV DNA replication forks and for stimulating topoisomerase I to allow for efficient relaxation of the torsional stress induced by replication fork progression.  相似文献   

14.
Histone octamers (hos) and DNA topoisomerase I contribute, along with other proteins, to the higher order structure of chromatin. Here we report on the similar topological requirements of these two protein model systems for their interaction with DNA. Both histone octamers and topoisomerase I positively and consistently respond to DNA supercoiling and curvature, and to the spatial accessibility of the preferential interaction sites. These findings (1) point to the relevance of the topology-related DNA conformation in protein interactions and define the particular role of the helically phased rotational information; and (2) help to solve the apparent paradoxical behaviour of ubiquitous and abundant proteins that interact with defined DNA sites in spite of the lack of clear sequence consensuses. Considering firstly, that the interactions with DNA of both DNA topoisomerase I and histone octamers are topology-sensitive and that upon their interaction the DNA conformation is modified; and secondly, that similar behaviours have also been reported for DNA topoisomerase II and histone H1, a topology-based functional correlation among all these determinants of the higher order structure of chromatin is here suggested.  相似文献   

15.
We have investigated interaction of Mycobacterium smegmatis topoisomerase I at its specific recognition sequence. DNase I footprinting demonstrates a large region of protection on both the scissile and non-scissile strands of DNA. Methylation protection and interference analyses reveal base-specific contacts within the recognition sequence. Missing contact analyses reveal additional interactions with the residues in both single and double-stranded DNA, and hence underline the role for the functional groups associated with those bases. These interactions are supplemented by phosphate contacts in the scissile strand. Conformation specific probes reveal protein-induced structural distortion of the DNA helix at the T-A-T-A sequence 11 bp upstream to the recognition sequence. Based on these footprinting analyses that define parameters of topoisomerase I-DNA interactions, a model of topoisomerase I binding to its substrate is presented. Within the large protected region of 30 bp, the enzyme makes direct contact at two locations in the scissile strand, one around the cleavage site and the other 8-12 bases upstream. Thus the enzyme makes asymmetric recognition of DNA and could carry out DNA relaxation by either of the two proposed mechanisms: enzyme bridged and restricted rotation.  相似文献   

16.
A splicing factor SF2/ASF is a natural substrate for the kinase activity of human topoisomerase I. This study demonstrates that SF2/ASF inhibits DNA cleavage by human topoisomerase I induced by the anti-cancer agent camptothecin. The inhibition is independent of the phosphorylation status of SF2/ASF. We show that the inhibition did not result from binding of SF2/ASF to DNA that would hinder interactions between topoisomerase I and DNA. Neither it was a consequence of a loss of sensitivity of the enzyme to camptothecin. We provide evidence pointing to reduced formation of the cleavable complex in the presence of SF2/ASF as a primary reason for the inhibition. This effect of SF2/ASF is reflected by inhibition of DNA relaxation catalysed by topoisomerase I.  相似文献   

17.
In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom’s syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIα and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIα is severely impaired. Since the BLM–topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis.  相似文献   

18.
d-ribose is an essential component of multiple important biological molecules and must first be phosphorylated by ribokinase before entering metabolic pathways. However, the function and regulation of ribokinases in Mycobacterium tuberculosis, the causative agent of tuberculosis, and its related species are largely unknown. In this study, we have characterized the activities of two putative ribokinases, Rv2436 and Ms4585, from M. tuberculosis and Mycobacterium smegmatis, respectively. The mycobacterial topoisomerase I (TopA) was found to physically interact with its ribokinase both in vitro and in vivo. By creating two ribokinase mutants that showed defective interactions with TopA, we further showed that the interaction between ribokinase and TopA had opposite effects on their respective function. While the interaction between the two proteins inhibited the ability of TopA to relax supercoiled DNA, it stimulated ribokinase activity. A cross-regulation assay revealed that the interaction between the two proteins was conserved in the two mycobacterial species. Thus, we uncovered an interplay between ribokinase and topoisomerase I in mycobacteria, which implies the existence of a novel regulatory strategy for efficient utilization of d-ribose in M. tuberculosis that may be useful in stressful environments with restricted access to nutrients.  相似文献   

19.
Proper chromosome organization is accomplished through binding of proteins such as condensins that shape the DNA and by modulation of chromosome topology by the action of topoisomerases. We found that the interaction between MukB, the bacterial condensin, and ParC, a subunit of topoisomerase IV, enhanced relaxation of negatively supercoiled DNA and knotting by topoisomerase IV, which are intramolecular DNA rearrangements but not decatenation of multiply linked DNA dimers, which is an intermolecular DNA rearrangement required for proper segregation of daughter chromosomes. MukB DNA binding and a specific chiral arrangement of the DNA was required for topoisomerase IV stimulation because relaxation of positively supercoiled DNA was unaffected. This effect could be attributed to a more effective topological reconfiguration of the negatively supercoiled compared with positively supercoiled DNA by MukB. These data suggest that the MukB-ParC interaction may play a role in chromosome organization rather than in separation of daughter chromosomes.  相似文献   

20.
This report demonstrates that Gadd45, a p53-responsive stress protein, can facilitate topoisomerase relaxing and cleavage activity in the presence of core histones. A correlation between reduced expression of Gadd45 and increased resistance to topoisomerase I and topoisomerase II inhibitors in a variety of human cell lines was also found. Gadd45 could potentially mediate this effect by destabilizing histone-DNA interactions since it was found to interact directly with the four core histones. To evaluate this possibility, we investigated the effect of Gadd45 on preassembled mononucleosomes. Our data indicate that Gadd45 directly associates with mononucleosomes that have been altered by histone acetylation or UV radiation. This interaction resulted in increased DNase I accessibility on hyperacetylated mononucleosomes and substantial reduction of T4 endonuclease V accessibility to cyclobutane pyrimidine dimers on UV-irradiated mononucleosomes but not on naked DNA. Both histone acetylation and UV radiation are thought to destabilize the nucleosomal structure. Hence, these results imply that Gadd45 can recognize an altered chromatin state and modulate DNA accessibility to cellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号