首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both signi?cant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism.  相似文献   

2.
Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants.  相似文献   

3.
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.  相似文献   

4.
随着空间生命科学研究的发展,人们将细胞、组织培养技术与微重力环境相结合产生了组织工程研究的一个新领域——微重力组织工程。模拟微重力条件下细胞培养和组织构建研究表明,微重力环境有利于细胞的三维生长,形成具有功能的组织样结构,培养后的三维组织无论从形态上还是基因表达上都更接近于正常的机体组织。这种微重力对细胞的作用效应,将可能为未来组织工程和再生医学研究提供一条新途径。该文概述了近十年来国内外微重力组织工程相关研究的最新进展。  相似文献   

5.
During space flight immunity is altered. This phenomenon is partly due to the microgravity condition itself. Our earlier space experiments (INTERFERON) indicated that microgravity has a significant effect at the cellular level. In our subsequent terrestrial studies we applied the Rotating Cell Culture System (RCCS) developed by NASA to mimick microgravity on ground. Previously we reported that human peripheral blood mononuclear cells (PBMCS) respond to simulated microgravity conditions with elevated tumor necrosis factor-alpha (TNF-alpha) production. We extended our investigations to the production of interleukin (IL)-12 under modelled microgravity conditions by separated PBMCs. In simulated microgravity we found significantly elevated level of secreted IL-12 compared to static, standard tissue culture conditions. Following a maximum of TNF-alpha production at 24 hours, the peak of IL-12 production was observed at 48 hours after the start of the experiment. Our results suggest that simulated microgravity favors the establishment of a Th1 type cytokine response.  相似文献   

6.
In microgravity, astronauts were constantly exposed to space radiation containing various kinds of radiation with a low-dose rate during long-term stays in space. It is very difficult to define the relative biological effectiveness (RBE) of space radiation under microgravity. In order to understand correct the RBE of space radiation, therefore, utilization of Centrifuge Facility is desired as a control experiment at orbit for removing other factors such as microgravity except space radiation. Here, we summarized the importance of Centrifuge Facility in the study of biological effect of space radiation.  相似文献   

7.
Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.  相似文献   

8.
许冬倩  郭双生 《广西植物》2015,35(1):133-136
微重力是最独特的空间环境条件之一,研究微重力对不同植物种类以及不同植物部位的影响是空间生物学的重要内容之一,对于建立生物再生式生命保障系统意义重大。生物再生式生命保障系统是未来开展长期载人空间活动的核心技术,其优势在于能在一个密闭的系统内持续再生氧气,水和食物等高等动物生活必需品,植物部件是生物再生式生命保障系统的重要组成部分。了解和掌握微重力对植物生长发育的影响,有助于采取有效的作业制度确保其正常生长发育和繁殖,是成功建立生物再生式生命保障系统的首要关键。该文就植物在空间探索中的地位和作用,地面模拟微重力的装置以及国内外有关微重力对植物的影响做一综述。现有的研究结果包括,未来长期的载人航天任务需要植物通过光合作用为生物再生式生命保障系统提供部分动物营养、洁净水以及清除系统中的固体废物和二氧化碳;三维随机回旋装置是目前地面上模拟微重力效应的主要装置之一,尤其适用于植物材料的长期模拟微重力处理;国内外有关微重力对植物影响的报道生理生化水平多集中在植物的生长发育和生理反应,比如表型变化或者与重力相关的激素或者钙离子的再分配,细胞或亚细胞水平主要有细胞壁、线粒体、叶绿体以及细胞骨架等,基因和蛋白质表达水平的研究对象主要为拟南芥。由于实验方法和材料之间的差异,微重力对不同植物或者植物不同部位在各个水平的影响效果并不一致,未来需要开展更多的相关研究工作。  相似文献   

9.
Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.  相似文献   

10.
Human exposure to microgravity is considered the major environmental factor of space flight that affects cells and tissues causing adverse effects to human health. Ground-based gravity-simulation experiments at the cellular and molecular levels have gained some insight into the underlying molecular and cellular alterations induced by microgravity. However, systematic study and detailed molecular mechanisms of the adverse effect of microgravity on living cells are still lacking. The main objective of this study was to apply DNA microarray technology in time-course experiments for genome-wide search of genes whose expression are altered by microgravity, as part of the effort in the identification of major space genes. In this study, we analyzed global gene expression profiles for a human liver cell line exposed to a ground-based modeled microgravity system for 1, 3, and 4 days using the rotary cell culture system (RCCS) and the Agilent 22k human oligo DNA microarrays. We have found that 139 genes' mRNA levels were significantly (P < or = 0.01) altered by the microgravity exposures. Some of these identified genes were further verified by Northern analysis.  相似文献   

11.
In recent years, some papers have reported synergism in the biological effects of space radiation and microgravity. However, there is no direct evidence for these phenomena. As one possible mechanism, we investigated whether DNA ligation in the final step of DSBs repair of DNA molecules induced by radiation is depressed by microgravity. Therefore, we have scheduled the space experiments of the effects of microgravity on repair activity of T4 DNA ligase for DSBs prepared with digestion of a restriction enzyme (Sma I) to plasmid DNA. As another possible mechanism, the high mutation frequency may be induced from abnormal base-incorporation during DNA replication under microgravity. Using the Taq polymerase and polymerase III, we have also scheduled whether mutation frequency is affected by microgravity during DNA replication for a damaged DNA base induced by an alkylating agent (N-methyl-N-nitrosourea, MNU).  相似文献   

12.
Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.  相似文献   

13.
Space radiation effects and microgravity   总被引:5,自引:0,他引:5  
Humans in space are exposed both to space radiation and microgravity. The question whether radiation effects are modified by microgravity is an important aspect in risk estimation. No interaction is expected at the molecular level since the influence of gravity is much smaller than that of thermal motion. Influences might be expected, however, at the cellular and organ level. For example, changes in immune competence could modify the development of radiogenic cancers. There are no data so far in this area. The problem of whether intracellular repair of radiation-induced DNA lesions is changed under microgravity conditions was recently addressed in a number of space experiments. The results are reviewed; they show that repair processes are not modified by microgravity.  相似文献   

14.
Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.  相似文献   

15.
This experiment was a feasibility study which consisted in investigating arterial blood pressure and heart rate to transient and repeated exposure to microgravity in eight unrestrained rats previously implanted with radio-telemetry transmitter. The aim was to perform such recordings throughout all the phases of a parabola during parabolic flights. This study revealed that it was possible to collect the radio-signal without any interference with electronic or magnetic environment. We observed in microgravity a significant reduction in heart rate (6%) and a significant increase in arterial blood pressure (7%). In conclusion, such a study seems to be feasible during longer exposure to microgravity (space flight) in order to study the cardiovascular adaptation in rat.  相似文献   

16.
Although many opportunities to make experiments under microgravity conditions have been given in the recent decade, it does not seem that a dramatic or decisive result has been obtained by use of microgravity. Promising some experiments in the space station are now near at hand, but it may be necessary to reconsider what the microgravity experiment is or how the microgravity field should be effectively utilized.  相似文献   

17.
Exposure to microgravity induces cardiovascular deconditioning characterized by orthostatic hypotension when astronauts return to the earth. In order to understand the mechanism of cardiovascular deconditioning, it is necessary to clarify the changes in hemodynamics and the cardiovascular regulation system over the period of space flight. The telemetry system applied to freely moving animals will be a useful and appropriate technique for this kind of long term study of the cardiovascular system in the conscious animal during space flight. The purpose of the present study is twofold: firstly, to observe the detailed changes of arterial pressure and heart rate (HR) during microgravity elicited by the parabolic flight in order to study the acute effect of microgravity exposure on the cardiovascular system; and secondly, to test the feasibility of the telemetry system for recording blood pressure, HR and autonomic nervous activities continuously during space flight.  相似文献   

18.
The ability to model astronaut reorientations computationally provides a simple way to develop and study human motion control strategies. Since the cost of experimenting in microgravity is high, and underwater training can lead to motions inappropriate for microgravity, these techniques allow for motions to be developed and well-understood prior to any microgravity exposure. By including a model of the current space suit, we have the ability to study both intravehicular and extravehicular activities. We present several techniques for rotating about the axes of the body and show that motions performed by the legs create a greater net rotation than those performed by the arms. Adding a space suit to the motions was seen to increase the resistance torque and limit the available range of motion. While rotations about the body axes can be performed in the current space suit, the resulting motions generated a reduced rotation when compared to the unsuited configuration.  相似文献   

19.
Crystals of a human (Sea) Bence-Jones dimer were produced in a capillary by vapor diffusion under microgravity conditions in the 9 day US Space Shuttle Mission STS-95. In comparison to ground-based experiments, nucleation was facile and spontaneous in space. Appearance of a very large (8 x 1.6 x 1.0 mm) crystal in a short time period is a strong endorsement for the use of microgravity to produce crystals sufficiently large for neutron diffraction studies. The Sea dimer crystallized in the orthorhombic space group P2(1)2(1)2(1), with a = 48.9 A, b = 85.2 A, and c = 114.0 A. The crystals grown in microgravity exhibited significantly lower mosaicities than those of ground-based crystals and the X-ray diffraction data had a lower overall B factor. Three-dimensional structures determined by X-ray analysis at two temperatures (100 and 293 K) were indistinguishable from those obtained from ground-based crystals. However, both the crystallographic R factor and the free R factor were slightly lower in the models derived from crystals produced in microgravity. The major difference between the two crystal growth systems is a lack of convection and sedimentation in a microgravity environment. This environment resulted in the growth of much larger, higher-quality crystals of the Sea Bence-Jones protein. Structurally, heretofore unrecognized grooves on the external surfaces of the Sea and other immunoglobulin-derived fragments are regular features and may offer supplementary binding regions for super antigens and other elongated ligands in the bloodstream and perivascular tissues.  相似文献   

20.
The aim of this review is to compile, summarize and discuss the effects of microgravity on embryos, cell structure and function that have been demonstrated from data obtained during experiments performed in space or in altered gravity induced by clinostats. In cells and tissues cellular structure and genetic expression may be changed in microgravity and this has a variety of effects on embryogenesis which include death of the embryo, failure of neural tube closure, or final deformities to the overall morphology of the newborn or hatchling. Many species and protocols have been used for microgravity space experiments making it difficult to compare results. Experiments on the ways in which embryonic development and cell interactions occur in microgravity could also be performed. Experiments that have been done with cells in microgravity show changes in morphology, cytoskeleton and function. Changes in cytoskeleton have been noted and studies on microtubules in gravity have shown that they are gravity sensitive. Further study of basic chemical reactions that occur in cells should be done to shed some light on the underling processes leading to the changes that are observed in cells and embryos in microgravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号