首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

2.
TGF-beta elicits context-dependent and cell-specific effects that often appear conflicting, such as stimulation or inhibition of growth, apoptosis or differentiation. It is puzzling how such a diverse array of responses can result from binding of TGF-beta to a single receptor complex that activates a seemingly straightforward signal-transduction scheme dependent on shuttling of Smad transducer proteins from the receptor to the nucleus. Here, we discuss a novel paradigm for TGF-beta signaling in endothelial cells in which the same ligand can induce opposing effects mediated by activation of two different classes of Smads through a chimeric receptor complex.  相似文献   

3.
Secretory phospholipase A(2)s (sPLA(2)) hydrolyze glycerophospholipids to liberate lysophospholipids and free fatty acids. Although group X (GX) sPLA(2) is recognized as the most potent mammalian sPLA(2) in vitro, its precise physiological function(s) remains unclear. We recently reported that GX sPLA(2) suppresses activation of the liver X receptor in macrophages, resulting in reduced expression of liver X receptor-responsive genes including ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and a consequent decrease in cellular cholesterol efflux and increase in cellular cholesterol content (Shridas et al. 2010. Arterioscler. Thromb. Vasc. Biol. 30: 2014-2021). In this study, we provide evidence that GX sPLA(2) modulates macrophage inflammatory responses by altering cellular cholesterol homeostasis. Transgenic expression or exogenous addition of GX sPLA(2) resulted in a significantly higher induction of TNF-α, IL-6, and cyclooxygenase-2 in J774 macrophage-like cells in response to LPS. This effect required GX sPLA(2) catalytic activity, and was abolished in macrophages that lack either TLR4 or MyD88. The hypersensitivity to LPS in cells overexpressing GX sPLA(2) was reversed when cellular free cholesterol was normalized using cyclodextrin. Consistent with results from gain-of-function studies, peritoneal macrophages from GX sPLA(2)-deficient mice exhibited a significantly dampened response to LPS. Plasma concentrations of inflammatory cytokines were significantly lower in GX sPLA(2)-deficient mice compared with wild-type mice after LPS administration. Thus, GX sPLA(2) amplifies signaling through TLR4 by a mechanism that is dependent on its catalytic activity. Our data indicate this effect is mediated through alterations in plasma membrane free cholesterol and lipid raft content.  相似文献   

4.
Subclinical doses of Paclitaxel (PTX) given 1 day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu+ tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8+ T cells with enhanced lytic activity against neu+ tumors. PTX treatment also enhances maturation marker expression on CD11c+ DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8+ T cells with greater lytic capability than DC’s from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-γ-secreting CD8+ T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC.  相似文献   

5.
肝纤维化的形成是由于肝脏持续性损伤以及细胞外基质合成和降解失衡所引起的。转化生长因子-β(Transforming growth factor-β,TGF-β)是肝纤维化形成中的关键细胞因子,在肝纤维化发生、发展过程中起着至关重要的作用。一些与TGF-β相关的转录因子如AP1、STAT3及Foxo3a等也参与肝纤维化的调控过程。现就在肝纤维化中TGF-β与转录因子AP1、STAT3和Foxo3a的相互作用作一综述。  相似文献   

6.
We evaluated expression of TLR2, TLR4 and proinflammatory genes [NF-κB, TNF-α, cyclooxygenase-2 (COX-2)] in liver samples of patients in different stages of liver disease. Fifteen patients with unexplained transaminases elevation (reference group), 22 with viral chronic hepatitis (hepatitis group), 14 with virus-induced severe fibrosis/cirrhosis (cirrhosis group) and 10 with hepatocarcinoma (hepatocarcinoma group) were consecutively included in the study. Quantification of TLR2, TLR4, NF-κB, TNF-α and COX-2 mRNA was done by real-time RT-PCR and TLR2 and TLR4 protein expression was evaluated by immunohistochemistry. Compared with reference, TLR2 and TLR4 mRNA was increased in hepatitis (TLR2: 2.66?±?0.69; TLR4: 3.11?±?0.79; P?相似文献   

7.
TGF-beta and fibrosis   总被引:18,自引:0,他引:18  
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.  相似文献   

8.
乙型肝炎病毒表面抗原抑制TLR2和TLR4的激活   总被引:3,自引:0,他引:3  
目的 研究乙型肝炎病毒表面抗原(HBsAg) 在乙型肝炎病毒逃逸机体天然免疫中的作用。方法  PMA诱导THP-1分化成巨噬样细胞,并与乙肝表面抗原(HBsAg)共培养作比较,在LPS (TLR4配体)和pam3csk4(TLR1,2配体)的刺激下,检测细胞上清液中细胞因子IL-10,IL-12的表达及胞内IL-10,IL-12 mRNA 的含量,并利用免疫荧光观察NF-κB p65入核和Western blotting检测IκB-α蛋白降解与ERK蛋白磷酸化水平来判定TLR信号通路活化程度。结果 HBsAg的胞外处理能以剂量依赖的方式干扰pam3csk4和LPS诱导的IL-10和IL-12的产生,同时HBsAg的存在明显干扰pam3csk4和LPS诱导的NF-κB p65入核和IκB-α降解及ERK蛋白磷酸化水平。结论 HBsAg抑制TLR2和TLR4的激活。  相似文献   

9.
Suppressor of cytokine signaling 1 (SOCS1) is an intracellular inhibitor of cytokine, growth factor, and hormone signaling. Socs1-/- mice die before weaning from a multiorgan inflammatory disease. Neonatal Socs1-/- mice display severe hypoglycemia and hypoinsulinemia. Concurrent interferon gamma gene deletion (Ifng-/-) prevented inflammation and corrected the hypoglycemia. In hyperinsulinemic clamp studies, however, Socs1-/- Ifng-/- mice had enhanced hepatic insulin sensitivity demonstrated by greater suppression of endogenous glucose production compared with controls with no difference in glucose disposal. Socs1-/- Ifng-/- mice had elevated liver insulin receptor substrate 2 expression (IRS-2) and IRS-2 tyrosine phosphorylation. This was associated with lower phosphoenolpyruvate carboxykinase mRNA expression. These effects were not associated with elevated hepatic AMP-activated protein kinase activity. Hepatic insulin sensitivity and IRS-2 levels play central roles in the pathogenesis of type 2 diabetes. Socs1 deficiency increases IRS-2 expression and enhances hepatic insulin sensitivity in vivo indicating that inhibition of SOCS1 may be a logical strategy in type 2 diabetes.  相似文献   

10.
Our studies indicate that the longevity factor SIRT1 is implicated in metabolic disease; however, whether and how hepatocyte-specific SIRT1 signaling is involved in liver fibrosis remains undefined. We characterized a functional link of age-mediated defects in SIRT1 to the NLRP3 inflammasome during age-related liver fibrosis. In multiple experimental murine models of liver fibrosis, we compared the development of liver fibrosis in young and old mice, as well as in liver-specific SIRT1 knockout (SIRT1 LKO) mice and wild-type (WT) mice. Liver injury, fibrosis, and inflammation were assessed histologically and quantified by real-time PCR analysis. In a model of hepatotoxin-induced liver fibrosis, old mice displayed more severe and persistent liver fibrosis than young mice during liver injury and after injury cessation, as characterized by inhibition of SIRT1, induction of NLRP3, infiltration of macrophages and neutrophils, activation of hepatic stellate cells (HSCs), and excessive deposition and remodeling of the extracellular matrix. Mechanistically, deletion of SIRT1 in hepatocytes resulted in NLRP3 and IL-1β induction, pro-inflammatory response, and severe liver fibrosis in young mice, mimicking the ability of aging to impair the resolution of established fibrosis. In an aging mouse model, chronic-plus-binge alcohol feeding-induced liver fibrosis was attenuated by treatment with MCC950, a selective NLRP3 inhibitor. NLRP3 inhibition ameliorated alcoholic liver fibrosis in old mice by repressing inflammation and reducing hepatocyte-derived danger signaling—ASK1 and HMGB1. In conclusion, age-dependent SIRT1 defects lead to NLRP3 activation and inflammation, which in turn impairs the capacity to resolve fibrosis during aging.  相似文献   

11.
TLR4 signaling attenuates ongoing allergic inflammation   总被引:5,自引:0,他引:5  
The relationship between LPS exposure and allergic asthma is poorly understood. Epidemiologic studies in humans have found that exposure to LPS can protect, have no effect, or exacerbate allergic asthma. Similarly, LPS has had variable effects on allergic pulmonary inflammation in the mouse, depending on the model used. In the present study, we studied the effect of very low doses of LPS in models of both short-term and long-term allergen challenge. When challenged with allergen for short periods, wild-type and tlr4-deficient mice had similar responses. However, when challenged for periods of 1 wk or longer, tlr4-deficient mice developed dramatically increased airway eosinophils, serum IgE, and Th2 cytokines compared with similarly challenged, genetically matched C57BL/6 mice. The relative attenuation of allergic responses seen in C57BL/6 mice was dependent on bone marrow-derived cell-specific expression of tlr4, and was not associated with an increase in Th1 responses. The number of dendritic cells in lungs of challenged tlr4-deficient mice was significantly increased compared with those in challenged C57BL/6 mice. No differences were seen in the abilities of naive C57BL/6 and tlr4-deficient mice to develop allergen-specific tolerance after exposure to similar preparations of OVA, suggesting that tolerance and regulation of existing inflammation develop through different mechanisms. The attenuation of eosinophilic inflammation in C57BL/6 mice was abolished when these mice were challenged with OVA supplemented with additional LPS. Together, these findings show that low doses of endotoxin can have regulatory effects on allergic inflammation, particularly in the setting of ongoing allergen exposure.  相似文献   

12.
IL-27, which is produced by activated APCs, bridges innate and adaptive immunity by regulating the development of Th cells. Recent evidence supports a role for IL-27 in the activation of monocytic cells in terms of inflammatory responses. Indeed, proinflammatory and anti-inflammatory activities are attributed to IL-27, and IL-27 production itself is modulated by inflammatory agents such as LPS. IL-27 primes LPS responses in monocytes; however, the molecular mechanism behind this phenomenon is not understood. In this study, we demonstrate that IL-27 priming results in enhanced LPS-induced IL-6, TNF-α, MIP-1α, and MIP-1β expression in human primary monocytes. To elucidate the molecular mechanisms responsible for IL-27 priming, we measured levels of CD14 and TLR4 required for LPS binding. We determined that IL-27 upregulates TLR4 in a STAT3- and NF-κB-dependent manner. Immunofluorescence microscopy revealed enhanced membrane expression of TLR4 and more distinct colocalization of CD14 and TLR4 upon IL-27 priming. Furthermore, IL-27 priming enhanced LPS-induced activation of NF-κB family members. To our knowledge, this study is the first to show a role for IL-27 in regulating TLR4 expression and function. This work is significant as it reveals new mechanisms by which IL-27 can enhance proinflammatory responses that can occur during bacterial infections.  相似文献   

13.
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.  相似文献   

14.
15.
TLR signaling   总被引:13,自引:0,他引:13  
  相似文献   

16.
17.
The immunomodulatory effects of glucocorticoids (GCs) have been described as bimodal, with high levels of GCs exerting immunosuppressive effects and low doses of GCs being immunopermissive. While the mechanisms used by GCs to achieve immunosuppression have been investigated intensely, the molecular mechanisms underlying the permissive effects of GCs remain uncharacterized. Herein, we demonstrate that GC conditioning during the differentiation of myeloid progenitors into macrophages (Mphis) results in their enhanced LPS responsiveness, demonstrated by an overexpression of the inflammatory cytokines TNF-alpha, IL-6, and IL-12. Inflammatory cytokine overexpression resulted from an increased activation of NF-kappaB and the MAPK signaling cascade and a reduced activation of the PI3K-Akt pathway following LPS stimulation. GC conditioning during Mphi differentiation induced an increase in the expression of SHIP1, a phosphatase that negatively regulates the PI3K signaling pathway. Small interfering RNA-mediated knockdown of SHIP1 expression increased PI3K-dependent Akt activation and subsequently decreased inflammatory cytokine expression, suggesting GC-mediated up-regulation of SHIP1 expression is responsible for the augmentation in inflammatory cytokine production following LPS stimulation. We also show that splenic Mphis purified from normal mice that were implanted with timed-release GC pellets exhibited an enhanced LPS responsiveness and increased SHIP1 expression, indicating that GCs can regulate SHIP1 expression in vivo. Our results suggest that minor fluctuations in physiological levels of endogenous GCs can program endotoxin-responsive hemopoietic cells during their differentiation by regulating their sensitivity to stimulation.  相似文献   

18.
19.
20.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号