首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Exact inference for matched case-control studies   总被引:1,自引:0,他引:1  
K F Hirji  C R Mehta  N R Patel 《Biometrics》1988,44(3):803-814
In an epidemiological study with a small sample size or a sparse data structure, the use of an asymptotic method of analysis may not be appropriate. In this paper we present an alternative method of analyzing data for case-control studies with a matched design that does not rely on large-sample assumptions. A recursive algorithm to compute the exact distribution of the conditional sufficient statistics of the parameters of the logistic model for such a design is given. This distribution can be used to perform exact inference on model parameters, the methodology of which is outlined. To illustrate the exact method, and compare it with the conventional asymptotic method, analyses of data from two case-control studies are also presented.  相似文献   

2.
A method of inverse sampling of controls in a matched case-control study is described in which, for each case, controls are sampled until a discordant set is achieved. For a binary exposure, inverse sampling is used to determine the number of controls for each case. When most individuals in a population have the same exposure, standard case-control sampling may result in many case-control sets being concordant with respect to exposure and thus uninformative in the conditional logistic analysis. The method using inverse control sampling is proposed as a solution to this problem in situations when it is practically feasible. In many circumstances, inverse control sampling is found to offer improved statistical efficiency relative to a comparable study with a fixed number of controls per case.  相似文献   

3.
Importance sampling or Markov Chain Monte Carlo sampling is required for state-of-the-art statistical analysis of population genetics data. The applicability of these sampling-based inference techniques depends crucially on the proposal distribution. In this paper, we discuss importance sampling for the infinite sites model. The infinite sites assumption is attractive because it constraints the number of possible genealogies, thereby allowing for the analysis of larger data sets. We recall the Griffiths-Tavaré and Stephens-Donnelly proposals and emphasize the relation between the latter proposal and exact sampling from the infinite alleles model. We also introduce a new proposal that takes knowledge of the ancestral state into account. The new proposal is derived from a new result on exact sampling from a single site. The methods are illustrated on simulated data sets and the data considered in Griffiths and Tavaré (1994).  相似文献   

4.
K F Hirji 《Biometrics》1991,47(2):487-496
A recently developed algorithm for generating the distribution of sufficient statistics for conditional logistic models can be put to a twofold use. First, it provides an avenue for performing inference for matched case-control studies that does not rely on the assumption of a large sample size. Second, joint distributions generated by this algorithm can be used to make comparisons of various inferential procedures that are free from Monte Carlo sampling errors. In this paper, these two features of the algorithm are utilized to compare small-sample properties of the exact, mid-P value, and score tests for a conditional logistic model with two unmatched binary covariates. Both uniparametric and multiparametric tests, performed at a nominal significance level of .05, were studied. It was found that the actual significance levels of the mid-P test tend to be closer to the nominal level when compared with those of the other two tests.  相似文献   

5.
A generalized case-control (GCC) study, like the standard case-control study, leverages outcome-dependent sampling (ODS) to extend to nonbinary responses. We develop a novel, unifying approach for analyzing GCC study data using the recently developed semiparametric extension of the generalized linear model (GLM), which is substantially more robust to model misspecification than existing approaches based on parametric GLMs. For valid estimation and inference, we use a conditional likelihood to account for the biased sampling design. We describe analysis procedures for estimation and inference for the semiparametric GLM under a conditional likelihood, and we discuss problems with estimation and inference under a conditional likelihood when the response distribution is misspecified. We demonstrate the flexibility of our approach over existing ones through extensive simulation studies, and we apply the methodology to an analysis of the Asset and Health Dynamics Among the Oldest Old study, which motives our research. The proposed approach yields a simple yet versatile solution for handling ODS in a wide variety of possible response distributions and sampling schemes encountered in practice.  相似文献   

6.
This paper considers inference methods for case-control logistic regression in longitudinal setups. The motivation is provided by an analysis of plains bison spatial location as a function of habitat heterogeneity. The sampling is done according to a longitudinal matched case-control design in which, at certain time points, exactly one case, the actual location of an animal, is matched to a number of controls, the alternative locations that could have been reached. We develop inference methods for the conditional logistic regression model in this setup, which can be formulated within a generalized estimating equation (GEE) framework. This permits the use of statistical techniques developed for GEE-based inference, such as robust variance estimators and model selection criteria adapted for non-independent data. The performance of the methods is investigated in a simulation study and illustrated with the bison data analysis.  相似文献   

7.
Browning S 《Genetics》2003,164(4):1561-1566
We propose a new method for calculating probabilities for pedigree genetic data that incorporates crossover interference using the chi-square models. Applications include relationship inference, genetic map construction, and linkage analysis. The method is based on importance sampling of unobserved inheritance patterns conditional on the observed genotype data and takes advantage of fast algorithms for no-interference models while using reweighting to allow for interference. We show that the method is effective for arbitrarily many markers with small pedigrees.  相似文献   

8.
Zhang H  Zheng G  Li Z 《Biometrics》2006,62(4):1124-1131
Using unphased genotype data, we studied statistical inference for association between a disease and a haplotype in matched case-control studies. Statistical inference for haplotype data is complicated due to ambiguity of genotype phases. An estimating equation-based method is developed for estimating odds ratios and testing disease-haplotype association. The method potentially can also be applied to testing haplotype-environment interaction. Simulation studies show that the proposed method has good performance. The performance of the method in the presence of departures from Hardy-Weinberg equilibrium is also studied.  相似文献   

9.
Guolo A 《Biometrics》2008,64(4):1207-1214
SUMMARY: We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.  相似文献   

10.
Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics.  相似文献   

11.
We study bias-reduced estimators of exponentially transformed parameters in general linear models (GLMs) and show how they can be used to obtain bias-reduced conditional (or unconditional) odds ratios in matched case-control studies. Two options are considered and compared: the explicit approach and the implicit approach. The implicit approach is based on the modified score function where bias-reduced estimates are obtained by using iterative procedures to solve the modified score equations. The explicit approach is shown to be a one-step approximation of this iterative procedure. To apply these approaches for the conditional analysis of matched case-control studies, with potentially unmatched confounding and with several exposures, we utilize the relation between the conditional likelihood and the likelihood of the unconditional logit binomial GLM for matched pairs and Cox partial likelihood for matched sets with appropriately setup data. The properties of the estimators are evaluated by using a large Monte Carlo simulation study and an illustration of a real dataset is shown. Researchers reporting the results on the exponentiated scale should use bias-reduced estimators since otherwise the effects can be under or overestimated, where the magnitude of the bias is especially large in studies with smaller sample sizes.  相似文献   

12.
We propose a conditional scores procedure for obtaining bias-corrected estimates of log odds ratios from matched case-control data in which one or more covariates are subject to measurement error. The approach involves conditioning on sufficient statistics for the unobservable true covariates that are treated as fixed unknown parameters. For the case of Gaussian nondifferential measurement error, we derive a set of unbiased score equations that can then be solved to estimate the log odds ratio parameters of interest. The procedure successfully removes the bias in naive estimates, and standard error estimates are obtained by resampling methods. We present an example of the procedure applied to data from a matched case-control study of prostate cancer and serum hormone levels, and we compare its performance to that of regression calibration procedures.  相似文献   

13.
Methods for the analysis of unmatched case-control data based on a finite population sampling model are developed. Under this model, and the prospective logistic model for disease probabilities, a likelihood for case-control data that accommodates very general sampling of controls is derived. This likelihood has the form of a weighted conditional logistic likelihood. The flexibility of the methods is illustrated by providing a number of control sampling designs and a general scheme for their analyses. These include frequency matching, counter-matching, case-base, randomized recruitment, and quota sampling. A study of risk factors for childhood asthma illustrates an application of the counter-matching design. Some asymptotic efficiency results are presented and computational methods discussed. Further, it is shown that a 'marginal' likelihood provides a link to unconditional logistic methods. The methods are examined in a simulation study that compares frequency and counter-matching using conditional and unconditional logistic analyses and indicate that the conditional logistic likelihood has superior efficiency. Extensions that accommodate sampling of cases and multistage designs are presented. Finally, we compare the analysis methods presented here to other approaches, compare counter-matching and two-stage designs, and suggest areas for further research.To whom correspondence should be addressed.  相似文献   

14.
Attributable risk estimation from matched case-control data   总被引:2,自引:0,他引:2  
S J Kuritz  J R Landis 《Biometrics》1988,44(2):355-367
A methodology is proposed for obtaining summary estimators, variances, and confidence intervals for attributable risk measures from data obtained through a case-control study design where one or more controls have been matched to each case. The sampling design for obtaining these data is conceptualized as a simple random sample of cases being equivalent to a simple random sample of matched sets. By combining information across the strata determined by the matched sets, this approach provides all of the benefits associated with the Mantel-Haenszel procedure for the estimators of attributable risk among the exposed and population attributable risk. Asymptotic variances are derived under the assumption that the frequencies of the unique response patterns follow the multinomial distribution. Simulation results indicate that these methods fare very well with respect to bias and coverage probability.  相似文献   

15.
We propose Metropolis-Hastings sampling methods for estimating the exact conditional p-value for tests of goodness of fit of log-linear models for mortality rates and standardized mortality ratios. We focus on two-way tables, where the required conditional distribution is a multivariate noncentral hypergeometric distribution with known noncentrality parameter. Two examples are presented: a 2 x 3 table, where the exact results, obtained by enumeration, are available for comparison, and a 9 x 7 table, where Monte Carlo methods provide the only feasible approach for exact inference.  相似文献   

16.
Beaumont MA 《Genetics》2003,164(3):1139-1160
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.  相似文献   

17.
Inverse sampling is considered to be a more appropriate sampling scheme than the usual binomial sampling scheme when subjects arrive sequentially, when the underlying response of interest is acute, and when maximum likelihood estimators of some epidemiologic indices are undefined. In this article, we study various statistics for testing non-unity rate ratios in case-control studies under inverse sampling. These include the Wald, unconditional score, likelihood ratio and conditional score statistics. Three methods (the asymptotic, conditional exact, and Mid-P methods) are adopted for P-value calculation. We evaluate the performance of different combinations of test statistics and P-value calculation methods in terms of their empirical sizes and powers via Monte Carlo simulation. In general, asymptotic score and conditional score tests are preferable for their actual type I error rates are well controlled around the pre-chosen nominal level, and their powers are comparatively the largest. The exact version of Wald test is recommended if one wants to control the actual type I error rate at or below the pre-chosen nominal level. If larger power is expected and fluctuation of sizes around the pre-chosen nominal level are allowed, then the Mid-P version of Wald test is a desirable alternative. We illustrate the methodologies with a real example from a heart disease study.  相似文献   

18.
Rosenbaum PR 《Biometrics》2007,63(2):456-464
Huber's m-estimates use an estimating equation in which observations are permitted a controlled level of influence. The family of m-estimates includes least squares and maximum likelihood, but typical applications give extreme observations limited weight. Maritz proposed methods of exact and approximate permutation inference for m-tests, confidence intervals, and estimators, which can be derived from random assignment of paired subjects to treatment or control. In contrast, in observational studies, where treatments are not randomly assigned, subjects matched for observed covariates may differ in terms of unobserved covariates, so differing outcomes may not be treatment effects. In observational studies, a method of sensitivity analysis is developed for m-tests, m-intervals, and m-estimates: it shows the extent to which inferences would be altered by biases of various magnitudes due to nonrandom treatment assignment. The method is developed for both matched pairs, with one treated subject matched to one control, and for matched sets, with one treated subject matched to one or more controls. The method is illustrated using two studies: (i) a paired study of damage to DNA from exposure to chromium and nickel and (ii) a study with one or two matched controls comparing side effects of two drug regimes to treat tuberculosis. The approach yields sensitivity analyses for: (i) m-tests with Huber's weight function and other robust weight functions, (ii) the permutational t-test which uses the observations directly, and (iii) various other procedures such as the sign test, Noether's test, and the permutation distribution of the efficient score test for a location family of distributions. Permutation inference with covariance adjustment is briefly discussed.  相似文献   

19.
Chen J  Rodriguez C 《Biometrics》2007,63(4):1099-1107
Genetic epidemiologists routinely assess disease susceptibility in relation to haplotypes, that is, combinations of alleles on a single chromosome. We study statistical methods for inferring haplotype-related disease risk using single nucleotide polymorphism (SNP) genotype data from matched case-control studies, where controls are individually matched to cases on some selected factors. Assuming a logistic regression model for haplotype-disease association, we propose two conditional likelihood approaches that address the issue that haplotypes cannot be inferred with certainty from SNP genotype data (phase ambiguity). One approach is based on the likelihood of disease status conditioned on the total number of cases, genotypes, and other covariates within each matching stratum, and the other is based on the joint likelihood of disease status and genotypes conditioned only on the total number of cases and other covariates. The joint-likelihood approach is generally more efficient, particularly for assessing haplotype-environment interactions. Simulation studies demonstrated that the first approach was more robust to model assumptions on the diplotype distribution conditioned on environmental risk variables and matching factors in the control population. We applied the two methods to analyze a matched case-control study of prostate cancer.  相似文献   

20.
We propose a new Markov Chain Monte Carlo (MCMC) sampling mechanism for Bayesian phylogenetic inference. This method, which we call conjugate Gibbs, relies on analytical conjugacy properties, and is based on an alternation between data augmentation and Gibbs sampling. The data augmentation step consists in sampling a detailed substitution history for each site, and across the whole tree, given the current value of the model parameters. Provided convenient priors are used, the parameters of the model can then be directly updated by a Gibbs sampling procedure, conditional on the current substitution history. Alternating between these two sampling steps yields a MCMC device whose equilibrium distribution is the posterior probability density of interest. We show, on real examples, that this conjugate Gibbs method leads to a significant improvement of the mixing behavior of the MCMC. In all cases, the decorrelation times of the resulting chains are smaller than those obtained by standard Metropolis Hastings procedures by at least one order of magnitude. The method is particularly well suited to heterogeneous models, i.e. assuming site-specific random variables. In particular, the conjugate Gibbs formalism allows one to propose efficient implementations of complex models, for instance assuming site-specific substitution processes, that would not be accessible to standard MCMC methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号