首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
The influence of bacterivorous nematodes (Diplolaimelloides meyli, Diplolaimelloides oschei, Diplolaimella dievengatensis, Panagrolaimus paetzoldi) on the decomposition of a macrophyte (Spartina anglica) in an aquatic environment was investigated by using laboratory microcosm experiments. Several earlier studies have shown enhancement of the decomposition process in the presence of nematodes, but nematode species-specific effects were never tested. In this study four bacterivorous nematode species were applied separately to microcosms to investigate such species-specific influences.No stimulation of the decomposition process nor of the microbial community was observed in the presence of the nematodes, both were highest in the absence of nematodes. However, clear differences were found between nematode treatments. P. paetzoldi reached much higher numbers than the other species, causing a decrease in microbial activity, probably due to (over)grazing. Remarkably this low microbial activity did not result in a slow-down of the decomposition process compared to the other nematode treatments, raising the question whether P. paetzoldi might be able to directly assimilate detrital compounds. Other nematode species reached much lower densities, but nevertheless an influence on the decomposition process was observed. However, this experiment does not support the view that bacterivorous nematodes enhance decomposition rate.The experimental results show that in nematode communities the use of functional groups is inadequate for biodiversity studies. The four nematode species used in this study belong to the same functional group, but are clearly not functionally redundant since they all have a different influence on the cordgrass decomposition. This suggests that the relationship between nematode species diversity and ecosystem functioning may be idiosyncratic.  相似文献   

2.
The effect of oil amendment in salt marsh sediment microcosms was examined by most probable number (MPN), DNA-hybridization with domain-specific oligonucleotide probes and whole community 16S rDNA-hybridizations. Gas chromatography (GC/MS) analysis of oil residues in sediments from microcosms after 3 months of operation showed that the quantity of petroleum hydrocarbons was lower in microcosms amended with oil compared to microcosms amended with oil+plant detritus. Bacterial numbers (total-MPN) increased in all experimental microcosms (amended with plant detritus, oil, and oil+plant detritus). In comparison to the intact sediment, the proportions of oil-degrading bacteria increased >100-fold in the oil amended microcosm and >10-fold in the plant detritus and the oil+plant detritus amended microcosms. DNA-hybridizations with Bacteria, Archaea and Eukarya oligonucleotide probes indicated few changes in the petroleum contaminated sediment community profile. In contrast, rDNA-hybridizations indicated that the bacterial community profile of the oil-impacted sediments, after 1 month of exposure, was significantly different from the control sediment.  相似文献   

3.
Interspecific interactions between plants influence plant phenotype, distribution, abundance, and community structure. Each of these can, in turn, impact sediment biogeochemistry. Although the population and community level impacts of these interactions have been extensively studied, less is known about their effect on sediment biogeochemistry. This is surprising given that many plants are categorized as foundation species that exert strong control on community structure. In southern California salt marshes, we used clipping experiments to manipulate aboveground neighbor presence to study interactions between two dominant plants, Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica). We also measured how changes in cordgrass stem density influenced sediment biogeochemistry. Pickleweed suppressed cordgrass stem density but had no effect on aboveground biomass. For every cordgrass stem lost per square meter, porewater ammonium increased 0.3–1.0 µM. Thus, aboveground competition with pickleweed weakened the effects of cordgrass on sediment biogeochemistry. Predictions about plant–soil feedbacks, especially under future climate scenarios, will be improved when plant–plant interactions are considered, particularly those containing dominant and foundation species.  相似文献   

4.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the “microbial loop.” To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  相似文献   

5.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  相似文献   

6.
The responses of major meiofaunal taxa and nematode species assemblage to the decaying leaf litter of the mangrove Kandelia candel were investigated through a field colonization experiment in subtropical Hong Kong. Sixty-four replicate azoic and organic-free sediment cores were treated with leaf litter additions of 0x, 0.5x, 1x and 2x natural sediment organic concentration, respectively, and retrieved 1, 10, 30 and 60 days post-placement. Replicate cores of ambient sediment were also taken at each sampling date to provide baseline information. Results of ANOVAs suggested that either different meiofaunal taxa responded to the leaf litter in different ways or the response of the same taxon changed over decomposition time. Multivariate ordination performed on nematodes revealed an alteration in community structure after 10, 30 and 60 days between controls and treatments. This alteration was attributed to some deposit feeding nematodes, particularly a bacterivorous species, Diplolaimella sp., which bloomed in all the cores treated with leaf litter, testifying to the important role such meiofauna plays in the process of detritus decomposition.  相似文献   

7.
Agriculture is the most dominant land use globally and is projected to increase in the future to support a growing human population but also threatens ecosystem structure and services. Bacteria mediate numerous biogeochemical pathways within ecosystems. Therefore, identifying linkages between stressors associated with agricultural land use and responses of bacterial diversity is an important step in understanding and improving resource management. Here, we use the Mississippi Alluvial Plain (MAP) ecoregion, a highly modified agroecosystem, as a case study to better understand agriculturally associated drivers of stream bacterial diversity and assembly mechanisms. In the MAP, we found that planktonic bacterial communities were strongly influenced by salinity. Tolerant taxa increased with increasing ion concentrations, likely driving homogenous selection which accounted for ~90% of assembly processes. Sediment bacterial phylogenetic diversity increased with increasing agricultural land use and was influenced by sediment particle size, with assembly mechanisms shifting from homogenous to variable selection as differences in median particle size increased. Within individual streams, sediment heterogeneity was correlated with bacterial diversity and a subsidy-stress relationship along the particle size gradient was observed. Planktonic and sediment communities within the same stream also diverged as sediment particle size decreased. Nutrients including carbon, nitrogen, and phosphorus, which tend to be elevated in agroecosystems, were also associated with detectable shifts in bacterial community structure. Collectively, our results establish that two understudied variables, salinity and sediment texture, are the primary drivers of bacterial diversity within the studied agroecosystem, whereas nutrients are secondary drivers. Although numerous macrobiological communities respond negatively, we observed increasing bacterial diversity in response to agricultural stressors including salinization and sedimentation. Elevated taxonomic and phylogenetic bacterial diversity likely increases the probability of detecting community responses to stressors. Thus, bacteria community responses may be more reliable for establishing water quality goals within highly modified agroecosystems that have experienced shifting baselines.  相似文献   

8.
The bacterial diversity associated with soil nematodes and its relationship with their feeding habits are as yet poorly understood. In the present study the diversity and abundance of bacteria from nematodes and their surrounding soil were analysed and compared. The nematodes were collected from a grassland soil and sorted into bacterial, fungal, plant, predatory and omnivore feeding groups and assigned to taxonomic groups. Total DNA was extracted from the nematodes and partial bacterial 16S rRNA genes were PCR amplified, cloned and sequenced. The abundance and composition of bacterial taxa differed between and within feeding groups. The lowest bacterial diversity was found in the predatory nematodes Prionchulus sp., whereas the highest bacterial diversity was associated with the bacterial-feeding nematode Acrobeles sp. The soil had a more diverse bacterial community than the communities found in the nematode groups. The 16S rRNA gene sequences of bacteria associated with nematodes did not overlap with those detected in soil as determined using the cloning screening approach. However, bacterial sequences identified from nematodes could be detected in the soil with targeted PCR. Our data suggest that the nematodes do not feed on the most abundant bacteria present in soil. Furthermore, several nematodes contained suspected bacterial symbionts and parasites.  相似文献   

9.
《Genomics》2021,113(4):2547-2560
Water quality parameter dynamics, gut, sediment and water bacteria communities were studied to understand the environmental influence on the gut microbial community of a new strain of Huanghe common carp. A total of 3,384,078 raw tags and 5105 OTUs were obtained for the gut, water and sediment bacteria. The water quality had a stronger influence on the water bacteria community than gut and sediment bacteria communities. The ambient water quality parameters also significantly influenced the water and sediment bacteria communities. Comparing the gut, sediment, and water microbial communities, a relationship was found among them. However, gut bacteria were more closely related to sediment bacterial communities than to water bacteria communities. The results showed that the top three bacterial taxa were identical in gut and sediment samples in the early days of rearing. Interestingly, bacterial communities in the carp gut, water, and sediment had different adaptabilities to variations in environmental factors.  相似文献   

10.
Scanning electron microscopy (SEM) was employed for the investigation of microorganisms living in marine sand sediments. Epifluorescence, as well as sediment analyses, gave further data on the parameters of the sediment samples.SEM revealed a correlation between the site and density of bacterial colonization and the microtopography of the individual sand grains.Sand grains with a medium roundness showed the greatest density of bacterial colonization. Protected surface sites were favored in the colonization process. The mode of bacterial attachment varied; mostly the barren sand grain surface was colonized. However, bacteria were also observed close to or within detritus or attached to diatoms. Many of the attaching bacteria observed were found to produce polymer strands.In some cases special structures were discovered which could serve bacterial attachment. Entire colonies attached by means of polymer nets, and disc-shaped bacteria were observed.  相似文献   

11.
The relative importance of predation and competition (resource limitation) in influencing the components of a below-ground food-web consisting of three trophic levels (bacteria and fungi; bacterial-feeding and fungal-feeding nematodes; and top predatory nematodes) was estimated using microbial biomass and nematode frequency data collected throughout a 1-year period in two agro-ecosystems. The study suggested that bacterial and fungal biomass were likely to be regulated by grazing and competition respectively, and that these differences were likely to be attributed to the biological (probably morphological) differences between bacteria and fungi, in contrast to the predictions of the hypothesis of Hairston et al. (1960). Top predatory nematodes were sometimes strongly related to the microbial but not microbial-feeding trophic levels, indicating that microbial biomass may directly influence top predator numbers, and that the intermediate level may simply serve as a conduit by which resources pass from the bottom to top trophic levels. This study also suggests that the detritus food-web acts as two distinct (bacterial-and fungal-based) compartments.  相似文献   

12.
《Aquatic Botany》1987,27(1):97-119
Bacteria growing on and in close association with the rhizome detritus of two seagrasses, Zostera marina L. and Thalassia testudinum Banks ex König, were examined using epifluorescence and scanning electron microscopy. The microbial community consisted of a diverse assemblage of bacteria dominated in biomass by large rod-shaped and filamentous cells. The large size of cells and the occurrence of measurable acetylene reduction activity suggested that a healthy, growing population of bacteria was associated with the rhizome detritus. Bacteria carbon biomass ranged betwee 5.2×10−5 and 1.7×10−3 g C gdw−1 of rhizome detritus. Depending on cell doubling times, bacterial metabolism could account for a substantial portion of the turnover of rhizome detritus. Estimates of potential microbial production, nitrogen fixation and the physico-chemical nature of rhizome detritus are discussed and we propose hypotheses for the disposition of this detrital organic matter.  相似文献   

13.
Nutrient enrichment may alter population dynamics of species in different ways depending on their life strategies. The aim of this study was to test the effect of different nutrient concentrations on the population development of two bacterivorous freshwater nematodes, Bursilla monhystera and Plectus aquatilis. Microcosms with autoclaved natural sand from a pristine stream (Fuirosos, NE of Spain) were enriched with different levels of phosphate, nitrate and ammonia as inorganic nutrients and glucose as a biodegradable dissolved organic carbon source. Although leaching of carbon and nutrients from the detritus fraction in the sediment initially may have overruled differences between treatments, later samplings revealed bottom-up control, with Bursilla monhystera abundances positively correlated to bacterial abundances at high nutrient concentrations. Nevertheless, there were several indications that nematodes in turn affected microbial abundance, most likely through excretion of ammonia and through grazing. In contrast to B. monhystera, Plectus aquatilis at high nutrient concentrations showed a unimodal abundance curve, while not increasing in abundance at low nutrient concentrations. Glucose enrichment did not have any stimulatory effect on either microbial or nematode abundances, probably as a result of unfavourable C:N:P stoichiometry. P enrichment, by contrast, stimulated microbial and Bursilla abundances. Our results indicate that episodic nutrient enrichment may affect populations of bacterial-feeding nematodes in the short term. Their longer-term dynamics may, however, be more dependent on leaching of carbon and nutrients from the pools of sediment-bound detritus.  相似文献   

14.
High numbers of bacteria are associated with arbuscular mycorrhizal (AM) fungi, but their functions and in situ activities are largely unknown and most have never been characterized. The aim of the present study was to study the impact of Glomus mosseae inoculation and plant type on the active bacterial communities in soil by using a molecular approach, bromodeoxyuridine (BrdU) immunocapture in combination with terminal-restriction fragment length polymorphism (T-RFLP). This approach combined with sequence information from clone libraries, enabled the identification of actively growing populations, within the total bacterial community. Distinct differences in active bacterial community compositions were found according to G. mosseae inoculation, treatment with an antifungal compound (Benomyl) and plant type. The putative identities of the dominant bacterial species that were activated as a result of G. mosseae inoculation were found to be mostly uncultured bacteria and Paenibacillus species. These populations may represent novel bacterial groups that are able to influence the AM relationship and its subsequent effect on plant growth.  相似文献   

15.
Specifically radiolabeled [14C-lignin]lignocellulose and [14C-polysaccharide]lignocellulose from the salt-marsh cordgrass Spartina alterniflora were incubated with an intact salt-marsh sediment microbial assemblage, with a mixed (size-fractionated) bacterial assemblage, and with each of three marine fungi, Buergenerula spartinae, Phaeosphaeria typharum, and Leptosphaeria obiones, isolated from decaying S. alterniflora. The bacterial assemblage alone mineralized the lignin and polysaccharide components of S. alterniflora lignocellulose at approximately the same rate as did intact salt-marsh sediment inocula. The polysaccharide component was mineralized twice as fast as the lignin component; after 23 days of incubation, ca. 10% of the lignin component and 20% of the polysaccharide component of S. alterniflora lignocellulose were mineralized. Relative to the total sediment and bacterial inocula, the three species of fungi mediated only very slow mineralization of the lignin and polysaccharide components of S. alterniflora lignocellulose. Experiments with uniformly 14C-labeled S. alterniflora material indicated that the three fungi and the bacterial assemblage were capable of degrading the non-lignocellulosic fraction of S. alterniflora material, but only the bacterial assemblage significantly degraded the lignocellulosic fraction. Our results suggest that bacteria are the predominant degraders of lignocellulosic detritus in salt-marsh sediments.  相似文献   

16.
Dogwood canker is a serious production problem of unknown etiology. From May 1985 through April 1989, cankers from 290 flowering dogwood trees in 15 separate nurseries were sampled for nematodes. Seventy-three percent (213) of the cankers contained nematodes. Panagrolaimus rigidus (Schneider) Thorne (115/290) and Aphelenchoides spp. (91/290) were the most frequently collected taxa. Panagrolaimus rigidus was reared on 2% water agar with unidentified bacteria as the food source. Aphelenchoides spp. were reared in antibiotic-amended agar culture with the fungus Glomerella cingulata (Stoneman) Spauld. &Schrenk as a food source. Repeated attempts to culture Aphelenchoides spp. on dogwood callus tissue were unsuccessful. Artificially created stem wounds inoculated with combinations of Aphelenchoides spp. and P. rigidus callused completely in 60 days with no indication of canker development. Very low numbers of nematodes were recovered from inoculated trees, but P. rigidus and one Aphelenchoides sp. were efficient dispersers and occurred in treatments other than those in which they were inoculated.  相似文献   

17.
Effects of manipulation of food supply on estuarine meiobenthos   总被引:1,自引:0,他引:1  
A comparative mesocosm experiment was carried out to determine the effects of natural foods of different quality and quantity on the structure of natural meiobenthic communities collected in undisturbed sediment from the polluted Westerschelde and the comparatively undisturbed Gironde estuaries. Nematode communities are more diverse and species rich in the latter estuary. The organic matter or foods used were phytoplankton, green alga, salt marsh plant detritus and leaf litter detritus which were added at three dose rates including a high dose. There was no change in community structure in response to the treatments in either of the estuarine meiobenthic communities. Analysis of all the results from this experiment indicate that the food quantity manipulations had almost no effect on the deposit feeding meiofauna. It may be that the reserves of organic matter within the sediment were sufficient to satisfy their dietary requirements for the duration of the experiment. The abundance of diatom/epigrowth feeding nematodes which were initially dominant in the Gironde, declined substantially suggesting that they may have been food limited since diatoms were not among the sources of organic matter added to the mesocosm. There was no specific response to the five different types of organic matter added to the mesocosm  相似文献   

18.
Bacterial communities associated with a variety of benthic detritus types were studied in three streams in the context of the chemical characteristics of the sediment material and the stream water. A cell purification assay was developed for a quantitative microscopic evaluation of bacterial community structure in detritus samples by fluorescence in situ hybridization (FISH). The efficiency of FISH with fluorescently monolabelled probes was compared with FISH with signal amplification by catalysed reporter deposition (CARD-FISH). In detritus types poor in organic carbon and nitrogen, the numbers of prokaryotes were related to the chemical characteristics of the stream water column, whereas no such relationship was found for detritus types rich in organic carbon and nitrogen. These results might help to provide criteria for the selection of detritus types for river ecosystem assessment and monitoring. The percentage of bacteria detected by FISH with monolabelled probes was correlated with the detritus total organic matter (OM). This is likely attributed to a higher ribosome content of microbial cells on substrates rich in OM. Cell detection by CARD-FISH did not show any correlation with OM content, indicating that this technique renders the results more independent from the activity state of cells. Fluorescence in situ hybridization with four group-specific probes suggested a relationship between substrate quality and the composition of the microbial assemblages on the various types of detritus. The improved protocol for cell purification and CARD-FISH may facilitate future investigations on the relationship between the riverine benthic detritus quality and microbial community composition.  相似文献   

19.
Bacterial community structure and the effects of several environmental factors on bacterial community distribution were investigated in the sediment of the macrophyte-dominated and algae-dominated areas in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Surface sediment samples were collected at 6 sampling sites (3 sites from each of the 2 areas) on 15 February and 15 August 2009. Based on cluster analysis of the DGGE banding patterns, there were significant seasonal variations in the structure of the sediment bacterial community in the macrophyte- and algae-dominated areas, and site-specific variation within an area and between 2 areas. However, there were no significant between-area variations due to the large within-area variation. Analysis of DNA sequences showed that there were differences in the species composition of the sediment bacteria between the macrophyte- and algae-dominated area clone libraries. In the macrophyte-dominated area library, the bacterial community was dominated by Deltaproteobacteria, Verrucomicrobia, Acidobacteria, Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. OP10 was found in the library of this area but not in the algae-dominated area library. The algae-dominated area library was dominated by Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Acidobacteria. Cyanobacteria, Alphaproteobacteria, and Planctomycetes were found in this area library but not in the macrophyte-dominated area library. Canonical correspondence analysis demonstrated that total phosphorus and water temperature were the dominant environmental factors affecting bacterial community composition in the sediment.  相似文献   

20.
We studied the role of nematode predation in the functioning of detrital food webs assembled in microcosms. The microcosms contained defaunated humus and litter materials, a diverse microbial community with bacteria, fungi and protozoa, and a birch (Betula pendula) seedling infected with mycorrhizal fungi. Different levels of top-down control upon microbivorous nematodes were set up by assembling food webs either without predators, or in combinations with a specialist and a non-specialist predatory mite (Mesostigmata). The nematode community was composed of either (1) three species of bacterivorous, or (2) three species of fungivorous nematodes or (3) both groups together. After two growing periods for the birch (38 weeks), the microcosms were destructively sampled for animal and microbial biomasses, concentration of mineral N in the soil, plant biomass and plant N concentration. The specialist predator reduced biomasses of both bacterial- and fungal-feeding nematodes by more than 50%, whereas the non-specialist predator weakly increased the biomass of fungivorous nematodes. Thus, under high predation pressure, the biomass of microbivores changed as predicted by trophic dynamic models assuming strong top-down control and uniformly behaving trophic levels. Despite this, microbial biomass was unaffected by the predators. However, microbial respiration increased slightly in the presence of predators. Assuming that microbial respiration correlates with microbial productivity, the increase in microbial respiration indicates a cascading productivity regulation. The composition of the microbivore community had only a minor effect on the outcome of the top-down control on microbes. The >50% reduction in nematode biomass and respiration coincided with <16% increase in microbial respiration and did not affect microbial biomass. Presence of the specialist predator slightly reduced soil NH+ 4 concentration in communities with fungivore nematodes but plant growth and N uptake remained unchanged. Thus, the structure of the community only weakly controlled nutrient mineralisation. Received: 18 May 1998 / Accepted: 3 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号