首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to compare the reproductive performances associated with the first (Cycle-1), second (Cycle-2), and mid-season (MS-Cycle) ovulations of the breeding season in donor mares that were treated with equine-FSH (eFSH) in the early vernal transition. Mares (n = 15) kept under ambient light were examined ultrasonographically per-rectum starting January 30. When an ovarian follicle ≥25 mm in diameter was detected, twice daily eFSH treatments were initiated. The eFSH treatments ceased when a follicle ≥35 mm was detected, and 36 h later hCG was administered. Thereafter, mares were artificially inseminated every 48 h until ovulation (Day 0). Trans-cervical embryo recovery attempts were performed on Day 8, and subsequently PGF2α was administered. Equine FSH was not administered in the subsequent estrous cycles. In Cycle-2 and in the MS-Cycle, hCG was administered when a follicle ≥35 mm was detected; breeding, embryo recovery, and PGF2α administration, were similar to Cycle-1. Mares had an untreated estrous cycle (no treatment or breeding) between Cycle-2 and the MS-Cycle. All mares developed follicle(s) ≥35 mm after 4.9 ± 0.6 days of eFSH treatment, and subsequently ovulations occurred; mean (95% CI) interval from treatment initiation to ovulation was 7.9 (6.5–9.3) days. The number of preovulatory follicles (≥30 mm) at the time of hCG administration (Cycle-1: 2.2 ± 0.3 compared with Cycle-2: 1.0 ± 0 compared with MS-Cycle: 1.1 ± 0.1 follicles), and the number of ovulations (2.5 ± 0.4 compared with 1.0 ± 0 compared with 1.1 ± 0.1 ovulations) were greater (p < 0.05) in Cycle-1. Nevertheless, mean embryo numbers did not differ among cycles (0.8 ± 0.2 compared with 0.5 ± 0.1 compared with 0.5 ± 0.1 embryo/mare). On average, embryo morphology grade was less (p < 0.05) in Cycle-1 as compared to non-eFSH cycles (combined Cycle-2 and MS-Cycle). This impaired embryo quality could be due to a seasonal effect, or negative effect of the eFSH treatment, which was possibly related to alterations in the hormonal environment (estradiol-17β and progesterone). A prolonged IOI (>21 days) was recorded in 7 of 15 mares following the Cycle-1 ovulation, but not subsequently. In conclusion, eFSH treatment of vernal transitional donor mares stimulated ovulation within only few days of treatment, and the following embryo recovery rate was at least as good as in the subsequent estrous cycles; however, on average, embryos were morphologically impaired. In subsequent estrous cycles in the breeding season, ovulations, embryo recovery rates, and embryo variables did not appear to be negatively affected; however, the first inter-ovulatory interval of the breeding season was prolonged in approximately half of the mares.  相似文献   

2.
T. Raz  C. Card 《Theriogenology》2009,72(2):169-178
Reliable methods of regulating estrus and stimulating superovulations in equine embryo transfer programs are desirable. Our objectives were to investigate the efficacy of a progesterone and estradiol-17β (P&E) estrus synchronization regimen in mares with and without subsequent equine follicle-stimulating hormone (eFSH) treatment and to examine the effects of eFSH on folliculogenesis and embryo production. Cycling mares were treated with P&E daily for 10 d. On the final P&E treatment day, prostaglandin F was administered, and mares were randomly assigned to one of two treatment groups (n = 20 mares/group). In both groups, mares were examined daily by transrectal ultrasonography. In the eFSH group, twice-daily eFSH treatments were initiated at follicle diameter 20 to 25 mm and ceased at follicle ≥35 mm; human chorionic gonadotrophin (hCG) was administered after 36 h. In the control group, eFSH treatments were not given, but hCG was administered at follicle ≥35 mm. Mares were inseminated with fresh semen, and embryo recovery attempts were performed 8 d postovulation. Synchrony of ovulations within each group appeared to be similar. Six mares in the eFSH group failed to ovulate. The eFSH treatment resulted in higher (P < 0.05) numbers of preovulatory follicles and ovulations; however, embryo recovery rate did not increase (eFSH 1.0 ± 0.4 vs. control 0.95 ± 0.1 embryos/recovery attempt), and embryo per ovulation rate was significantly lower (36% vs. 73%). The eFSH-treated mares had significantly higher frequency of nonovulatory follicles (28% vs. 0) and higher periovulatory serum concentrations of estradiol-17β. Based on our findings, combined P&E and eFSH regimens cannot be recommended for cycling donor mares.  相似文献   

3.
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F (PGF) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means ± SEM) serum concentration of progesterone on Day 9 (3.06 ± 0.09 ng/mL vs. 2.53 ± 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 ± 0.11 mm vs. 12.05 ± 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 ± 0.10 mm, 11.90 ± 0.11 mm, and 12.00 ± 0.10 mm for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 ± 0.11 ng/mL, 3.81 ± 0.11 ng/mL, and 4.87 ± 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU eCG. Cows receiving PGF on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 ± 0.21 ng/mL vs. 4.58 ± 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 ± 0.21 mm vs. 10.84 ± 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 ± 0.14 ng/mL vs. 4.55 ± 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol.  相似文献   

4.
The efficacy of a recently engineered single chain recombinant equine follicle stimulating hormone (reFSH) was investigated in estrous cycling mares whose gonadotropins and follicular activity had been suppressed by concurrent treatment with progesterone and estradiol (P&E). Time of estrus was synchronized in 15 estrous cycling mares during the breeding season with prostaglandins F (PGF). The day after ovulation, mares were treated once daily with P&E for 14 days. Mares received a second injection of PGF on day 6 of the synchronized estrous cycle to induce luteolysis. On day 8 post-ovulation mares were randomly assigned to three groups: small dose reFSH-treatment group (0.5 mg reFSH IV, twice daily); large dose reFSH-treatment group (0.85 mg reFSH IV twice daily); control group (saline IV, twice daily). reFSH treatment occurred concurrently with the last week of P&E treatment. After a follicle or cohort of follicles reached 35 mm in diameter, mares were injected with 0.75 mg of recombinant equine luteinizing hormone (reLH) to induce ovulation. Post-treatment ovulation was assessed. Daily blood samples were collected for analysis of FSH, LH, estradiol, progesterone, and inhibin by radioimmunoassay (RIA). On the first day of reFSH/saline treatment, blood samples were collected periodically from 1 h prior to treatment to 6 h post-injection via an indwelling jugular catheter to determine acute changes in FSH concentrations. Monitoring of follicular activity, estrus, and ovulation was performed daily by utilizing a stallion and transrectal ultrasonography.A difference (p ≤ 0.05) between the largest diameter follicle in the reFSH-treatment groups compared to controls occurred on day 14 post-ovulation, the day treatments ended, and the difference continued until day 21 post-ovulation. reFSH-treatment groups had larger (p ≤ 0.05) numbers of 20–29 mm follicles (days 13–18), 30–34 mm follicles (days 15–20) and ≥35 mm follicles (days 16–21) than controls. Mares treated with reFSH, at either dose, took less time (average: 2.95 ± 0.42 days) to develop 2–3 times more pre-ovulatory follicles than control mares (7.8 ± 0.51 days) (p ≤ 0.05). The number of ovulations between treated mares and controls were similar due to a greater incidence of ovulation failure in reFSH-treated mares. During reFSH treatment, concentrations of plasma FSH, inhibin and estradiol were greater (p ≤ 0.05) compared to control concentrations. Plasma LH concentrations in reFSH-treated mares were suppressed and did not exhibit the ovulatory surge of controls (p ≤ 0.05). Plasma progesterone concentrations were not different across groups.These findings demonstrate the specific effects of reFSH to increase number of total follicles including pre-ovulatory follicles in mares with endogenous pituitary gonadotropins and follicular growth suppressed by a regimen of P&E.  相似文献   

5.
The effect of exercise on mare reproductive efficiency was evaluated by comparing rates of embryo recovery from mares assigned to either an exercise regimen or a non-exercise (control) regimen. Exercised mares were worked daily for 30 min under average ambient conditions of >30 °C and >50% humidity. Mares were inseminated during estrus and subjected to uterine flush for embryo recovery on d 7 after ovulation for two consecutive cycles. After this, mares were allocated to the opposite group and allowed an estrous cycle without reproductive manipulation; then insemination and uterine flushing were conducted on two more consecutive cycles. Prostaglandin F was administered on the day of uterine flush. Mare rectal temperature increased during exercise from a mean of 38 °C to a mean of 39.9 °C. Mares had ovulations from smaller follicles when exercised than they did under control conditions (39.8 ± 0.5 compared with 41.5 ± 0.5 mm diameter; P < 0.05), and had an increased time from PGF administration to subsequent ovulation (8.47 ± 0.337 compared with 9.27 ± 0.294 d; P < 0.05). Embryo recovery from control mares was 22 of 35 (63%). Fewer embryos were recovered from exercised mares (11 of 32, 34%; P < 0.05). The proportion of embryos classified as Grade 1 tended to be less in exercised than in non-exercised mares (4 of 11, 36% compared with 16 of 22, 73%; P = 0.051). These data indicate that exercising mares in a hot and humid environment are associated with changes in ovarian follicle development and ovulation, and a reduction in embryo recovery.  相似文献   

6.
T. Raz  S. Carley 《Theriogenology》2009,71(9):1358-1366
The objective was to compare the effects of eFSH and deslorelin treatment regimes on ovarian stimulation and embryo production of donor mares in early spring transition. Starting January 30th, mares kept under ambient light were examined by transrectal ultrasonography. When a follicle ≥25 mm was detected, mares were assigned to one of two treatment groups, using a sequential alternating treatment design. In the eFSH group, mares (n = 18) were treated twice daily with eFSH (12.5 mg im) until they achieved a follicle ≥35 mm; hCG was given 36 h later. In the deslorelin group, mares (n = 18) were treated twice daily with deslorelin (63 μg im) until a follicle ≥35 mm was detected, and then they were given hCG. Estrous mares were inseminated with fresh semen. Eight days after ovulation, embryo recovery attempts were performed. In each group, 14/18 (78%) mares ovulated following the eFSH or deslorelin treatment regimes. The mean (95% CI) interval from treatment initiation to ovulation was 8.2 d (7.3, 8.9) and 7.2 d (6.2, 8.1) in the eFSH and deslorelin groups, respectively. In the eFSH group, the number of ovulations was significantly higher (mean ± S.E.M.; 3.4 ± 0.4 vs. 1.1 ± 0.1 ovulations), and more embryos were recovered (2.6 ± 0.5 vs. 0.4 ± 0.2 embryos/recovery attempt). We concluded that eFSH and deslorelin treatment regimes were equally effective in inducing ovulation in early transitional mares, within a predictable time of treatment; however, the eFSH regime increased the number of ovulations and embryos recovered per mare.  相似文献   

7.
Equine follicle stimulating hormone (eFSH) has been used to induce follicular development in transitional mares and problem acyclic mares, as well as superovulate cycling mares. The most efficacious protocol is to administer 12.5 mg eFSH, intramuscularly, twice daily beginning 5 to 7 days after ovulation when the diameter of the largest follicle is 20 to 25 mm. Prostaglandins are to be administered on the second day of eFSH therapy. Treatment with eFSH is continued for 3 to 5 days until follicle(s) are >or=35 mm in diameter. The mare is subsequently allowed to 'coast' for 36 h, after which human chorionic gonadotropin is administered to induce ovulation.  相似文献   

8.
Superovulation could potentially increase embryo recovery for immediate transfer or cryopreservation. The objectives were to evaluate the effect of pretreatment with progesterone and estradiol (P+E) on follicular response to eFSH and compare doses of eFSH and ovulatory agents on follicular development and ovulation in mares. In Experiment 1, 40 mares were assigned to one of four treatment groups. Group 1 consisted of untreated controls. Group 2 mares were administered eFSH without pretreatment with P+E. Group 3 mares were administered P+E for 10 days starting in mid-diestrus followed by eFSH therapy. Group 4 mares were administered P+E for 10 days followed by eFSH therapy. All treated mares were administered 12.5mg eFSH twice daily and prostaglandins were given on the second day of eFSH therapy. Mares were bred with fresh semen the day of hCG administration and with cooled semen the following day. The numbers of preovulatory follicles and ovulations were lower for mares treated with P+E prior to eFSH treatment. Pretreatment with P+E in estrus also resulted in a lower embryo recovery rate per ovulation compared to the other two eFSH treatment groups. In Experiment 2, two doses of eFSH (12.5 and 6.25mg) and two ovulation-inducing agents (hCG and deslorelin) were evaluated. The number of preovulatory follicles was greater for mares given 12.5mg of eFSH compared to mares given 6.25mg. Number of ovulations was greatest for mares given 12.5mg of eFSH twice daily followed by administration of hCG. Embryo recovery per flush was similar among treatment groups, but the percent of embryos per ovulation was higher for mares given the low dose of eFSH. In summary, there was no advantage to giving P+E prior to eFSH treatment. In addition, even though the lower dose of eFSH resulted in fewer ovulations, embryo recovery per flush and embryo recovery per ovulation were similar or better for those given the lower dose of eFSH.  相似文献   

9.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

10.
The objective of the study was to compare the ovulatory response and embryo production in llamas (Lama glama) treated with a single dose of equine chorionic gonadotropin (eCG) alone or combined with intravaginal medroxyprogesterone acetate (MPA) at the time of follicular wave emergence. Llamas with a growing follicle ≥7 mm in diameter were assigned to one of the following groups: (1) Control (n = 28): Nonstimulated llamas were mated and embryos were collected 7 d after mating. (2) eCG (n = 32): Llamas were given 5 mg luteinizing hormone (LH) (Day 0) to induce ovulation, 1000 IU eCG on Day 2, a luteolytic dose of prostaglandin F on Day 6, mating on Day 7, and embryo collection on Day 14. (3) eCG+MPA (n = 34): Llamas were treated as those in the eCG group, but a sponge containing 60 mg MPA was placed intravaginally from Days 2 to 6. Llamas that did not respond to synchronization or superstimulation were excluded, leaving data from n = 26, 26, and 27 in the control, eCG, and eCG+MPA groups, respectively, for statistical analysis. The mean (±SD) number of follicles > 7 mm at the time of mating was greatest in the eCG group, intermediate in the eCG+MPA group, and lowest in the control group (16.6 ± 5.3, 12.9 ± 3.7, and 1.0 ± 0.0, respectively, P < 0.001). The number of corpora lutea was similar between eCG and eCG+MPA groups (10.1 ± 2.9 and 8.6 ± 3.7, respectively); both were higher (P < 0.001) than in controls (0.9 ± 0.3). The number of embryos did not differ significantly between the eCG and eCG+MPA groups (4.8 ± 2.8 and 3.5 ± 3.0, respectively), but both were higher (P < 0.001) than in the controls (0.7 ± 0.4). In conclusion, eCG, with or without MPA effectively induced a superovulatory response and multiple embryo production in llamas.  相似文献   

11.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

12.
This study was conducted to test the hypothesis that supplementation of growing follicles with LH during the early spring transitional period would promote the development of steroidogenically active, dominant follicles with the ability to respond to an ovulatory dose of hCG. Mares during early transition were randomly assigned to receive a subovulatory dose of equine LH (in the form of a purified equine pituitary fraction) or saline (transitional control; n = 7 mares per group) following ablation of all follicles >15 mm. Treatments were administered intravenously every 12 h from the day the largest follicle of the post-ablation wave reached 20 mm until a follicle reached >32 mm, when an ovulatory dose of hCG (3000 IU) was given. Saline-treated mares during June and July were used as ovulatory controls. In a preliminary study, injection of this pituitary fraction (eLH) to anestrus mares was followed by an increase in circulating levels of LH (P < 0.01) but not FSH (P > 0.6). Administration of eLH during early transition stimulated the growth of the dominant follicle (Group x Day, P < 0.00001), which attained diameters similar to the dominant follicle in ovulatory controls (P > 0.1). In contrast, eLH had no effect on the diameter of the largest subordinate follicle or the number of follicles >10 mm during treatment (P > 0.3). The numbers of mares that ovulated in response to hCG in transitional control, transitional eLH and ovulatory control groups (2 of 2, 3 of 5 and 7 of 7, respectively) were not significantly different (P > 0.1). However, after hCG-induced ovulation, all transitional mares returned to an anovulatory state. Circulating estradiol levels increased during the experimental period in ovulatory controls but not in transitional eLH or transitional control groups (Group x Day, P = 0.013). In addition, although progesterone levels increased after ovulation in transitional control and transitional eLH groups, levels in these two groups were lower than in the ovulatory control group after ovulation (Group, P = 0.045). In conclusion, although LH supplementation of early transitional waves beginning after the largest follicle reached 20 mm promoted growth of ovulatory-size follicles, these follicles were developmentally deficient as indicated by their reduced steroidogenic activity.  相似文献   

13.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cyclic mares were assigned to 1 of 3 treatments (n=15 per group): Group 1 received equine pituitary extract (EPE; 25 mg, i.m.) on Day 5 after ovulation; Group 2 received EPE on Day 12 after ovulation; while Group 3 received 3.3 mg of GnRH analogue (buserelin implant) on the day of ovulation and 25 mg, i.m. EPE on Day 12. Mares in each group were given 10 mg PGF(2)alpha on the first and second day of EPE treatment. The EPE treatment was continued daily until the first spontaneous ovulation, at which time 3,300 IU of human chorionic gonadotropin (hCG) were given to induce further ovulations. Mares in estrus with a >/=35 mm follicle were inseminated every other day with pooled semen from 2 stallions. Embryo recovery was attempted 7 days after the last ovulation. Follicular changes and embryo recovery during 15 estrous cycles prior to treatment were used as control data. During treatment, the number of follicles >/=25 mm was higher (P<0.05) for Day 5 than for Day 12 or control mares, but the number for Day-5 mares was similar (P>0.05) to that of mares treated with buserelin implants (Group 3). Initiation of EPE treatment on Day 5 resulted in a greater (P<0.05) number of ovulation (2.9) than on Day 12 (1.1) or in the control mares (1.3) but not in the buserelin-treated mares (1.8). The number of embryos recovered from mares in the Day 5 (1.2), Day 12 (1.0), buserelin (0.9) and control (0.9) groups was similar (P>0.05). The conclusions were 1) EPE initiated in early diestrus increased follicular development and ovulation and 2) treatment with GnRH analogue marginally improved response to EPE treatment.  相似文献   

15.
Proper timing of insemination for optimal conception is accomplished by frequent palpations per rectum, by ultrasonography of the preovulatory follicle and/or by treatment with hCG or GnRH. Sustained release of GnRH from implants has been shown to hasten ovulation. Therefore, 2 studies were conducted to evaluate the efficacy of a GnRH analog, deslorelin, for hastening ovulation in nonlactating cyclic mares. The GnRH implant was 2.3 x 3.7 mm and released deslorelin for 2 to 3 days. In Experiment 1, 60 nonlactating, cycling mares were assigned to 1 of 5 doses: 0, 1.2, 1.7, 2.2 and 2.7 mg per implant. Mares were assigned sequentially on the first day of estrus (Day 1). Ovaries were examined per rectum and with ultrasonography every 12 h until ovulation. Once the mares obtained a follicle >30 mm, they were injected subcutaneously with a GnRH implant. The mares were inseminated every other day during estrus with semen from 1 of 3 stallions. Pregnancy was determined with ultrasonography. Experiment 2, 40 nonlactating, cyclic mares were assigned to 1 of 5 treatments (same treatments as in Experiment 1). Data were obtained on interval to ovulation, duration of estrus and pregnancy rates at 12, 18 and 35 d after ovulation. Time to ovulation was shorter (P<0.05) in GnRH-treated mares than in control mares in the Experiment 1. Mean time to ovulation was 68, 49, 48, 47, 44 h in Experiment 1, and 91, 66, 58, 46, 58 h in Experiment 2 for mares given 0, 1.2, 1.7, 2.2 and 2.7 mg/mare in the 2 trials. Averaged for both experiments, the proportion of mares ovulating within 48 h of treatment was 40, 75, 85, 90 and 90% for 0, 1.2, 1.7, 2.2 and 2.7 mg/mare. For both experiments, there was no effect of GnRH on pregnancy rate. In summary, a subcutaneous implant containing GnRH analog induced ovulation in most mares by 48 h of injection, and there was no advantage of doses higher than 2.2 mg/mare.  相似文献   

16.
A regimen of progesterone plus estradiol (P&E) was used as a standard for ovarian synchronization to test the efficacy and evaluate the commercial application of ultrasound-guided follicle ablation as a non-steroidal alternative for ovulation synchronization in mares. Recipient mares at a private embryo transfer facility were at unknown stages of the estrous cycle at the start of the experiment on Day 1 when they were randomly assigned to an ablation group (n=18-21 mares) or to a P&E group (n=20-21 mares). In the ablation group, mares were lightly sedated and all follicles > or = 10 mm were removed by transvaginal ultrasound-guided follicle aspiration. In the P&E group, a combination of progesterone (150 mg) plus estradiol (10mg) prepared in safflower oil was given daily (im) for 10 d. Two doses of prostaglandin F(2alpha) (PGF, 10mg/dose, im) were given 12 h apart on Day 5 in the ablation group, or a single dose on Day 10 in the P&E group. Human chorionic gonadotropin (hCG, 2500 IU/mare, im) was given at a fixed time, 6 and 10 d after PGF treatment in the ablation and P&E groups, respectively, with the expectation of a follicle > or = 30 mm at the time of treatment. In both the ablation and P&E groups, transrectal ultrasonography was done at the start of the study (Day 1) and again on the day of hCG treatment and daily thereafter to determine the presence of a CL, measure diameter of the largest follicle and detect ovulation. The mean interval from the start of the study and from PGF treatment to ovulation was shorter (P<0.0001) in the ablation group (13.7 and 9.7 d, respectively) compared to the P&E group (22.3 and 13.2 d, respectively). Following fixed-day treatment with hCG after PGF treatment, the degree of ovulation synchronization was not different (P>0.05) between the ablation and P&E groups within a 2-d (56 and 70%) or 4-d (83% and 90%) period. Although ultrasound-guided follicle ablation may not be practical in all circumstances, it excluded the conventional 10-d regimen of progesterone and estradiol and was considered an efficacious and feasible, non-steroidal alternative for ovulation synchronization in mares during the estrous cycle.  相似文献   

17.
A tendency for deslorelin implants to suppress subsequent follicular growth and delay return to estrus following induced ovulation has been documented in nonlactating mares. To investigate this phenomenon in lactating mares, 22 broodmares in southeast Texas were administered either deslorelin or hCG to induce ovulation in the first postpartum estrus during February and March 2001. Mares were teased daily and examined twice weekly (Tuesdays and Thursdays) by transrectal ultrasonography. When a follicle >35 mm diameter was detected on Tuesday, mares were treated with either 2,500 U hCG administered intravenously or with one implant (2.1 mg) deslorelin administered subcutaneously. Mares were bred every other day until ovulation was detected or until they ceased behavioral estrus, and were examined 16 days after treatment to detect pregnancy. Follicular measurements were recorded for all mares during each examination, and interestrous intervals were recorded for mares not becoming pregnant. Treatment of mares with either hCG or deslorelin resulted in similar ovulatory responses and pregnancy rates. Deslorelin-treated mares had fewer ovarian follicles >20 mm in diameter 16 days after treatment than hCG-treated mares (P < 0.01). Interestrous intervals for mares failing to become pregnant on foal heat breeding were prolonged in deslorelin-treated compared to hCG-treated mares (P < 0.01). Date of treatment was negatively correlated with length of the interestrous interval in deslorelin-treated mares (P < 0.01), but was not correlated with length of interestrous interval in hCG-treated mares (P > 0.10). All mares failing to become pregnant from foal heat breedings became pregnant from later breedings, but the parturition to conception interval was prolonged in deslorelin-treated compared to hCG-treated mares that did not become pregnant on foal heat (P < 0.01).  相似文献   

18.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

19.
Traditionally, mares are put under artificial lights to advance the first ovulation of the year. The aim of the present study was to determine the efficacy of recombinant equine FSH (reFSH) in stimulating follicular development and advancing the first ovulation of the year in seasonally anestrous mares compared with anestrous mares given a placebo. Both groups of mares were housed under ambient light conditions. Sixty deep anestrous mares of light horse breeds (follicular diameters ≤20 mm in diameter and progesterone <1 ng/mL) were maintained under a natural photoperiod at three different sites: University of California, Davis, Colorado State University, and University of Kentucky Gluck Centre. Twenty mares at each site were randomly allocated to receive either 0.65 mg of reFSH (group A: treatment; n = 10) or a placebo (group B: control; n = 10) twice daily by im beginning on January 31. Treatment continued until one or more preovulatory follicles developed or up to a maximum of 15 days. Randomized treatments were blinded. Follicular development was closely monitored by transrectal ultrasonography. When the largest follicle reached ≥35 mm in diameter, reFSH treatment was discontinued and an injection of 2500 international units of hCG was administered iv 36 hours later to induce ovulation. Jugular blood samples were collected daily from all mares at University of California, Davis, and processed for LH, FSH, progesterone, estradiol-17β, and immunoreactive-inhibin by RIA. All 30 mares receiving reFSH (group A) developed follicles ≥35 mm within 7.4 ± 1.6 days of treatment. Twenty-three of the 30 reFSH-treated mares (group A) ovulated within 72 hours after hCG administration. In contrast, mares in group B (placebo, control) did not exhibit significant follicular development and none ovulated within the 15-day observation period. Mares in group A had significantly higher plasma levels of FSH, estradiol-17β, and immunoreactive-inhibin during treatment but did not exhibit a preovulatory LH surge. Mares administered reFSH returned to anestrus and spontaneously ovulated at a similar calendar date as control mares. These data indicate that reFSH was effective in stimulating the development of ovarian follicles and advancing the first ovulation of the year in seasonally anestrous mares under ambient lights but was not successful in inducing continued cyclicity.  相似文献   

20.
The objective of this study was to determine the effects of progesterone and cloprostenol (a PGF analogue) on ovarian follicular development and ovulation in prepubertal heifers. In Experiment 1, crossbred Hereford heifers (Bos taurus; 10 to 12 mo old, 255 to 320 kg) were assigned randomly to three groups and given (1) an intravaginal progesterone-releasing insert (CIDR; P group, n = 13); (2) a CIDR plus 500 μg cloprostenol im (PGF analogue) at CIDR removal (PPG group, n = 11); or (3) no treatment (control group, n = 14). The CIDR inserts were removed 5 d after follicular wave emergence. Progesterone-treated heifers (P and PPG groups) had a larger dominant follicle than that of the control group (P = 0.01). The percentage ovulating was highest in the PPG group (8 of 11, 73%), intermediate in the P group (4 of 13, 31%), and lowest in the control group (1 of 14, 7%; P < 0.02). In Experiment 2, 16 heifers (14 to 16 mo old, 300 to 330 kg) were designated to have follicular wave emergence synchronized with either a CIDR and 1 mg estradiol benzoate im (EP group, n = 8) on Day 0 (beginning of experiment) or by transvaginal ultrasound-guided ablation of all follicles ≥5 mm on Day 3 (FA group, n = 8). On Day 7, CIDRs were removed in the EP group, and all heifers received 500 μg cloprostenol im. Ovulation was detected in 6 of 8 heifers (75%) in both groups. In summary, the use of PGF with or without exogenous progesterone treatment increased the percentage ovulating in heifers close to spontaneous puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号