首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A proportion of the neuronal microtubule-associated protein (MAP) τ is highly phosphorylated in foetal and adult brain, whereas the majority of τ in the neurofibrillary tangles of Alzheimer's patients is hyperphosphorylated; many of the phosphorylation sites are serines or threonines followed by prolines. Several kinases phosphorylate τ at such sites in vitro. We have now shown that purified recombinant stress-activated protein kinase/c-Jun N-terminal kinase, a proline-directed kinase of the MAP kinase extended family, phosphorylates recombinant τ in vitro on threonine and serine residues. Western blots using antibodies to phosphorylation-dependent τ epitopes demonstrated that phosphorylation occurs in both of the main phosphorylated regions of τ protein. Unlike glycogen synthase kinase-3, the c-Jun N-terminal kinase readily phosphorylates Thr205 and Ser422, which are more highly phosphorylated in Alzheimer τ than in foetal or adult τ. Glycogen synthase kinase-3 may preferentially phosphorylate the sites found physiologically, in foetal and to a smaller extent in adult τ, whereas stress-activated/c-Jun N-terminal kinase and/or other members of the extended MAP kinase family may be responsible for pathological proline-directed phosphorylations. Inflammatory processes in Alzheimer brain might therefore contribute directly to the pathological formation of the hyperphosphorylated τ found in neurofibrillary tangles.  相似文献   

2.
Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.  相似文献   

3.
1.Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders affecting 1 in 10,000 individuals. The present study was aimed to elucidate the role played by reactive oxygen species (ROS) in the pathogenesis of this disease. 2. To address this question we used 7-11 passaged fibroblasts from HSP patients to measure the extent of DNA damage induced by H2O2 treatment and to evaluate the JNK phosphorylation level after hydrogen peroxide and serum stimuli. 3. The present study demonstrates that HSP cells compared to controls are more sensitive to DNA damages induced by H2O2 treatment, and that JNK phosphorylation levels are increased in HSP fibroblasts compared to controls after hydrogen peroxide and serum stimuli. These results suggest a ROS-mediated pathogenetic mechanism for this disease.  相似文献   

4.
5.
As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21Waf1/Cip1 (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.The actin cytoskeleton is a dynamic structure that determines cell morphology and motility. In addition, the cytoskeleton also influences other biological functions, such as proliferation, survival, and death, although the mechanistic details linking the cytoskeleton to these processes have not been fully elucidated. Considerable effort has focused on characterizing the signal transduction pathways that control cytoskeletal organization (33). The actin cytoskeleton itself also may regulate cell signaling; for example, mechanical stretching, shear stress, and cytoskeletal disruption each have been shown to activate stress-activated protein kinase (SAPK) pathways (34). Although in Saccharomyces cerevisiae an actin integrity-responsive pathway has been identified in which actin cytoskeleton disassembly results in the activation of the Ssk2p kinase that lies upstream of the Hog1 SAPK pathway (7, 56), an analogous pathway in mammalian cells has not been delineated.SAPK pathways are specific examples of mitogen-activated protein kinase (MAPK) cascades (43). At the bottom of archetypal MAPK pathways are signal-propagating kinases such as ERK1 and ERK2; in the case of SAPK signaling, the similarly positioned kinases are JNK and p38 family members. MAPK are phosphorylated and regulated by MAPK kinases (MAP2K); for c-Jun N-terminal kinase (JNK), the MAP2K are MKK4 and MKK7, while for p38 they are MKK3 and MKK6. Moving stepwise further upstream are MAP3K and MAP4K, although in some pathways there may be no need for a MAP4K, the Ras activation of the MAP3K Raf in the ERK MAPK pathway being one example.Although much recent interest has focused on their antiproliferative and proapoptotic functions as a component of the Salvador-Warts-Hippo tumor suppressor network (31) and as binding partners of the c-Raf MAP3K (42) and RASSF1A tumor suppressor (39), the mammalian Ste20-like kinases 1 and 2 (MST1 and MST2, respectively) were first identified (17) because of their homology with the Saccharomyces cerevisiae Ste20 MAP4K that acts upstream of three MAPK cascades, including the Ste11/Pbs2/Hog1 SAPK pathway (51). Although the MST kinase domains are very similar to those in Ste20 and mammalian p21-activated kinases (PAK), there is little homology outside this domain, and as a result MST1 and MST2 make up their own Ste20 subfamily without direct orthologues prior to the emergence of the bilaterian subregnum. Given the homology with Ste20, initial characterization focused on the possibility that MST kinases were involved in MAPK regulation, and indeed MST kinases were found to activate SAPK pathways (27), which was associated with the activation of MKK6 and MKK7 (27). It also was found that MST1 coexpression with a kinase-dead version of the MAP3K MEKK1 blocked JNK activation (26). Consistently with these results, MST1 could not activate JNK in cells deleted for both MAP2K enzymes MKK4 and MKK7 (53). Therefore, it appears that MST kinases work at the same level (MAP4K) as Ste20 in the regulation of the SAPK pathways. Although proapoptotic signaling has been shown to contribute to MST activation via caspase-mediated proteolysis, which removes an autoinhibitory domain (27), little is known about how other nonapoptotic stimuli regulate MST.There are several possible consequences resulting from the activation of SAPK pathways in response to modifications to actin cytoskeleton organization or integrity. Actin disruption and consequent JNK activation may induce cell cycle arrest (23) or apoptosis (11), or it may promote cell survival (2). We previously showed that one way JNK activation following cytoskeletal disruption might contribute to cell cycle arrest is through the stabilization of the cyclin-dependent kinase inhibitor (CDKI) p21Waf1/Cip1 (p21) (14). The eventual outcome of SAPK activation following actin cytoskeleton modification may be influenced by signal intensity, duration, and cellular context. Further progress toward determining how cytoskeletal disruption generates these outcomes will be possible when the details describing how actin cytoskeletal changes activate SAPK signaling have been established.We wished to determine whether MST kinases sense the integrity of the actin cytoskeleton and link with SAPK signaling. We found that MST2 was colocalized with filamentous actin structures. The expression of MST1 or MST2 was sufficient to activate JNK1, and cytoskeletal disruption activated MST as well as JNK1 in an MST-dependent manner. One consequence of actin disruption is the JNK-mediated stabilization of p21, which was determined to be via phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.  相似文献   

6.
Onconase, an anticancer ribonuclease, damages cellular tRNA and causes caspase-dependent apoptosis in targeted cells (M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, and B. E. Magun. Cancer Res. 60, 1983–1994, 2000). The proapoptotic action of onconase depends on its RNase activity, but the molecular mechanisms leading to RNA damage-induced caspase activation are completely unknown. In this study, we have investigated whether onconase activates two signal-transduction pathways commonly stimulated by conventional chemo- and radiotherapy, namely the stress-activated protein kinase (SAPK) cascade and the pathway leading to the activation of nuclear factor-kappa B (NF-κB). We found that, in all cell types tested, onconase is a potent activator of SAPK1 (JNK1 and JNK2) and SAPK2 (p38 MAP kinase), but that it is incapable of activating NF-κB. Inhibition of p38 MAP kinase activity with a pharmacological inhibitor, SB203580, demonstrated that p38 MAP kinase is not required for onconase cytotoxicity. Using explanted fibroblasts from mice that contain targeted disruption of both jnk1 and jnk2 alleles, we found that JNKs are important mediators of onconase-induced cytotoxicity. Surprisingly, following the immortalization of these same cells with human papilloma virus (HPV16) gene products E6 and E7, additional proapoptotic pathways (exclusive of JNK) were provoked by onconase. Our results demonstrate that onconase may activate proapoptotic pathways in tumor cells that are not able to be accessed in normal cells. These results present the possibility that the cytotoxic activity of onconase in normal cells may be reduced by blocking the activity of JNKs.  相似文献   

7.
8.
Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3′,5′-cyclic monophosphate and 8-bromoguanosine-3′,5′-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Iβ expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by phosphorylating c-Raf kinase on Ser43 and thereby inhibiting its activation and (ii) by inducing MAP kinase phosphatase 1 expression.  相似文献   

9.
The oxidative stress-responsive 1 (OSR1) kinase belongs to the mammalian STE20-like kinase family. OSR1 is activated by with no lysine [K] (WNKs) kinases, and then it phosphorylates cation-coupled Cl-cotransporters, regulating ion homeostasis and cell volume in mammalian cells. However, the specific mechanisms of OSR1 activation remains poorly defined, largely due to its extremely low basal activity. Here, we dissect in detail the regulatory mechanisms of OSR1 activation from the aspects of autoinhibition, upstream kinase WNK, and the newly identified master regulator mouse protein-25 (MO25). Based on our structural and biochemical studies, we propose a “double lock” model, accounting for the tight autoinhibition of OSR1, an effect that has to be removed by WNK before MO25 further activates OSR1. Particularly, the conserved C-terminal (CCT) domain and αAL helix act together to strongly suppress OSR1 basal activity. WNKs bind to the CCT and trigger its conformational rearrangement to release the kinase domain of OSR1, allowing for MO25 binding and full activation. Finally, the regulatory mechanisms of OSR1 activation were further corroborated by cellular studies of OSR1-regulated cell volume control through WNK-OSR1 signaling pathway. Collectively, these results provide insights into the OSR1 kinase activation to facilitate further functional study.  相似文献   

10.
11.
Abstract: We examined the possibility that c-Jun N-terminal kinase (JNK) and nuclear factor κB (NF-κB) might be involved in intracellular signaling cascades that mediate NMDA-initiated neuronal events. Exposure of cortical neurons to 100 µ M NMDA induced activation of JNK within 1 min. Activity of JNK was further increased over the next 5 min and then declined by 30 min. Similarly, ionomycin, a selective Ca2+ ionophore, induced activation of JNK. The NMDA-induced activation of JNK was abrogated in the absence of extracellular Ca2+, suggesting that Ca2+ entry is necessary and sufficient for the JNK activation. Immunohistochemistry with anti-NF-κB antibody demonstrated nuclear translocation of NF-κB within 5 min following NMDA treatment. NMDA treatment also enhanced the DNA binding activity of nuclear NF-κB in a Ca2+-dependent manner. Treatment with 3 m M aspirin blocked the NMDA-induced activation of JNK and NF-κB. Neuronal death following a brief exposure to 100 µ M NMDA was Ca2+ dependent and attenuated by addition of aspirin or sodium salicylate. The present study suggests that Ca2+ influx is required for NMDA-induced activation of JNK and NF-κB as well as NMDA neurotoxicity. This study also implies that aspirin may exert its neuroprotective action against NMDA through blocking the NMDA-induced activation of NF-κB and JNK.  相似文献   

12.
13.
Atypical protein kinase C (PKC) isoforms are required for nerve growth factor (NGF)-initiated differentiation of PC12 cells. In the present study, we report that PKC-iota becomes tyrosine phosphorylated in the membrane coincident with activation posttreatment with nerve growth factor. Tyrosine phosphorylation and activation of PKC-iota were inhibited in a dose-dependent manner by both PP2 and K252a, src and TrkA kinase inhibitors. Purified src was observed to phosphorylate and activate PKC-iota in vitro. In PC12 cells deficient in src kinase activity, both NGF-induced tyrosine phosphorylation and activation of PKC-iota were also diminished. Furthermore, we demonstrate activation of src by NGF along with formation of a signal complex including the TrkA receptor, src, and PKC-iota. Recruitment of PKC-iota into the complex was dependent on the tyrosine phosphorylation state of PKC-iota. The association of src and PKC-iota was constitutive but was enhanced by NGF treatment, with the src homology 3 domain interacting with a PXXP sequence within the regulatory domain of PKC-iota (amino acids 98 to 114). Altogether, these findings support a role for src in regulation of PKC-iota. Tyrosine 256, 271, and 325 were identified as major sites phosphorylated by src in the catalytic domain. Y256F and Y271F mutations did not alter src-induced activation of PKC-iota, whereas the Y325F mutation significantly reduced src-induced activation of PKC-iota. The functional relevance of these mutations was tested by determining the ability of each mutant to support TRAF6 activation of NF-kappaB, with significant impairment by the Y325F PKC-iota mutant. Moreover, when the Y352F mutant was expressed in PC12 cells, NGF's ability to promote survival in serum-free media was reduced. In summary, we have identified a novel mechanism for NGF-induced activation of atypical PKC involving tyrosine phosphorylation by c-Src.  相似文献   

14.
Epidermal growth factor (EGF) has been shown to facilitate the in vitro maturation of sheep oocytes, and enhance embryo’s capability for further development. However, such kind of molecular mechanism has not yet been elucidated. In the present study, we investigated the effect of EGF-mediated mitogen-activated protein kinases 3 and 1 (MAPK3/1) pathway on in vitro maturation of sheep oocytes. U0126, a specific inhibitor of MEK (MAPK kinase), was added into the maturation culture medium to block the EGF-mediated MAPK3/1 pathway with different doses. Then, the nuclear maturation of sheep oocytes was examined. Additionally, the effect of EGF-mediated MAPK3/1 on cytoplasmic maturation was examined though in vitro fertilization and embryonic development. The rate of germinal vesicle breakdown (GVBD) after 6 h of culture with 10−4 mol/l of U0126 (50.4%) was significantly decreased compared with control (67.2%, p < 0.05), and the first polation body (PB1) extrusion rate after 22 h of culture in drug treatment was also significantly inhibited compared with control (28.6% vs. 48.4%, p < 0.05). However, 10−6 mol/l U0126 had slight effect on oocyte nuclear maturation. The normal distribution rate of α-tubulin in the oocytes after 22 h of in vitro maturation was significantly decreased in the 10−4 mol/l U0126 group (54%) compared with control (68%, p < 0.05). After in vitro fertilization, the cleavage rate in drug treatments (56.8% in 10−6 mol/l U0126 group and 42.6% in 10−4 mol/l U0126 group) was significantly decreased compared with control (72.3%, p < 0.01). The blastocyst rate in 10−4 mol/l U0126 group (17.6%) was also significantly decreased compared with control (29.9%, p < 0.05). Collectively, these results suggest that EGF-mediated MAPK3/1 pathway is conducive to in vitro maturation of sheep oocytes.  相似文献   

15.
Abstract : In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AβPP) by the α-secretase pathway within the βA4 domain to generate a soluble secreted N-terminal fragment (AβPPs). AβPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform β1 and novel PKCε from cytosol to membrane fractions, but there was no alteration in the proportion of AβPP associated with the Tritonsoluble and -insoluble fractions. AβPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AβPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 μ M ), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AβPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the α-secretase activity leading to the secretion of AβPPs can occur at the level of the presynaptic terminal.  相似文献   

16.
Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like MAPK signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPKK, and KGB-1 JNK-like MAPK. In this study, we identify the max-2 gene encoding a C. elegans Ste20-related protein kinase as a component functioning upstream of the MLK-1-MEK-1-KGB-1 pathway. The max-2 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. Biochemical analysis reveals that MAX-2 activates MLK-1 through direct phosphorylation of a specific residue in the activation loop of the MLK-1 kinase domain. Our genetic data presented here also show that MIG-2 small GTPase functions upstream of MAX-2 in the KGB-1 pathway. These results suggest that MAX-2 and MIG-2 play a crucial role in mediating the heavy metal stress response regulated by the KGB-1 pathway.Mitogen-activated protein kinase (MAPK) signal transduction pathways are evolutionarily conserved in eukaryotic cells and transduce signals in response to a variety of extracellular stimuli. Each pathway is composed of three classes of protein kinases: MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK) (4, 14). MAPKKK phosphorylates and activates MAPKK, which in turn activates MAPK by dual phosphorylation of threonine and tyrosine residues within a Thr-Xxx-Tyr motif. Three subgroups of MAPKs have been identified: the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinases (4, 14). JNK and p38 MAPKs function as key mediators of stress and immune signaling in mammals. The MKK4 and MKK7 MAPKKs have been shown to activate JNK, and the MKK3 and MKK6 MAPKKs serve as the major activators of p38 MAPK (4, 14). The specific MAPKKs are themselves phosphorylated and activated by specific MAPKKKs.Recent studies of Caenorhabditis elegans have revealed a high degree of conservation of JNK MAPK signaling components between C. elegans and mammals. The C. elegans JNK pathway, composed of an MKK7-type MAPKK JKK-1 and a JNK-type MAPK JNK-1, regulates coordinated movement via type D GABAergic (GABA stands for γ-aminobutyric acid) motor neurons (10) and has a role in synaptic vesicle transport (3). C. elegans also possesses another JNK-like MAPK pathway, composed of MLK-1 MAPKKK, MEK-1 MAPKK, and KGB-1 MAPK, which is homologous to the mammalian MLK-MKK7-JNK MAPK signaling cassette. KGB-1 has a novel activation site, consisting of Ser-Xxx-Tyr rather than Thr-Xxx-Tyr (19, 21). The KGB-1 pathway regulates the stress response to heavy metals (19). We have previously identified the vhp-1 and shc-1 genes as components functioning in the KGB-1 pathway. The vhp-1 and shc-1 genes encode a MAPK phosphatase (MKP) highly homologous to mammalian MKP-7 and a homolog of the mammalian Shc adaptor, respectively (19, 20). VHP-1 plays an important role in the heavy metal stress response in C. elegans by negatively regulating the KGB-1 pathway through dephosphorylation of KGB-1. SHC-1 mediates activation of the KGB-1 pathway by linking MEK-1 MAPKK with MLK-1 MAPKKK. However, it remains unknown what components function upstream of the MLK-1-MEK-1-KGB-1 pathway.In mammalian cells, the kinase activity of MLK family members is controlled by several different mechanisms, such as dimer formation, autoinhibition mediated by the Src homology 3 (SH3) domain of the MLKs itself, interaction with small GTPases, and phosphorylation by MAPKKK kinase (MAP4K) (6). In this study, we identified MAX-2, a member of the Ste20 group of protein kinases, as a potential component functioning upstream of MLK-1 MAPKKK in the KGB-1 pathway. MAX-2 physically associates with and phosphorylates MLK-1 at a Ser residue in the activation loop located between kinase subdomains VII and VIII of MLK-1, resulting in its activation. Additionally, we found that MIG-2, a member of the Rac family of small GTPases, functions as an upstream regulator of MAX-2. Our results thus identify the in vivo machinery regulating the JNK-mediated stress response pathway via a Ste20-related kinase and Rac-type GTPase.  相似文献   

17.
Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson''s disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways.  相似文献   

18.
Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.  相似文献   

19.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   

20.
Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity and appears to depend on the activation of both the JAK-2 and PI-3 kinase pathways. Activation of the Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by a kinase-impaired EGFR and is linked to survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号