首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The growth of the endothelial cell (EC) is tightly regulated throughout the body. Many factors have been implicated in modulating EC growth including diffusible compounds, cell-to-cell interactions, and the extracellular matrix (ECM). Retinol, or vitamin A alcohol, has recently been shown to inhibit the growth of bovine capillary ECs, in vitro. Retinoids are known to modify ECM in other cell systems, and pure ECM components have been shown to effect EC growth rates. We, therefore, examined the role of the matrix in the retinol-induced inhibition of ECs. Cell-free matrices from control and vitamin A-treated ECs were prepared by removing cells with EGTA treatment after 7 d of culture. Matrix proteins were analyzed by solubilizing the matrices in 5M quanidine-HCl and performing Western blot analysis using specific antibodies to matrix proteins. In isolating the ECM, we observed that retinol-treated cultures of ECs were resistant to EGTA removal; retinol-treated ECs required twice the exposure time to EGTA to detach from their matrix than did controls cells. Western blot analysis of matrix proteins derived from control and retinol-treated EC cultures demonstrated a 1.6-fold increase in lamininβ chains and a 2.5-fold increase in fibronectin in the ECM of retinol-treated EC compared to control cell matrix. Functional properties of these matrices were assessed by plating control and Day 6 retinol-treated ECs onto the matrices and measuring attachment and growth by determining cell numbers at 24, 72, and 144 h. These studies revealed that control cells attached in greatest numbers to a control matrix whereas retinol-treated ECs preferentially attached to a matrix derived from retinol-treated cells. Furthermore, control ECs which grew rapidly on a control matrix were growth inhibited on a retinol-derived matrix. These data indicate that vitamin A treatment of ECs effects both their phenotype and influences the composition and the functional properties of their underlying ECM. These studies also demonstrate that alterations of the matrix are at least in part responsible for the growth inhibition of EC by retinol.  相似文献   

2.
The endothelial cell (EC) barrier disruption has been implicated in vascular leakage and pulmonary edema. Many reports have shown that the EC barrier dysfunction is regulated by the sphingosine-1-phophate (S1P)/S1P receptor-1 (S1PR1) axis. Identifying downstream effectors for the S1P/S1PR1 axis in pulmonary vasculature has been limited by mixed populations in vitro cultures that do not retain physiological EC phenotype and complex of tedious proteomics. In this study, we used a combination of in vivo biotinylation and liquid chromatograph tandem mass spectrometry on three mouse models of S1pr1 expression, namely normal, knockout (KO) and high, to identify EC membrane proteins whose cell-surface expression is S1pr1-dependent. EC-specific KO of S1pr1 caused severe pulmonary vascular disruption and reduction of many membrane proteins on ECs. Using the MaxQuant software we were able to identify novel membrane targets of S1pr1, for instance, Cd105 and Plvap, by comparison with their membrane expressions among the three EC model systems. Moreover, regulation of Cd105 and Plvap by S1pr1 were validated with Western blot and immunostaining in vivo and in vitro. Our data suggest that S1pr1 dictates cell-surface localization of several apical membrane proteins in ECs. Our results are insightful for development of novel therapeutics to specifically target EC barrier function.  相似文献   

3.
Annexin 1 (ANXA1), galectin-1 (Gal-1) and galectin-3 (Gal-3) proteins have been identified as important mediators that promote or inhibit leukocyte migration. The expression of these proteins was studied in human neutrophils and endothelial cells (ECs) during a transmigration process induced by IL-8. Upon neutrophil adhesion to EC, a significant increase in the cleaved ANXA1 (LCS3, raised against all ANXA1 isoforms) expression was detected in the plasma membrane of adhered neutrophils and ECs compared to intact ANXA1 isoform (LCPS1, against N-terminus of protein). Adherent neutrophils had elevated Gal-3 levels in the nucleus and cytoplasm, and ECs in their plasma membranes. In contrast, a decrease in the total amounts of Gal-1 was detected in migrated compared to non-migrated neutrophils. Therefore, ANXA1 and Gal-3 changed in their content and localization when neutrophils adhere to endothelia, suggesting a process of sensitive-balance between two endogenous anti- and pro-inflammatory mediators.  相似文献   

4.
Some G protein-coupled receptors might be spacially targetted to discrete domains within the plasma membrane. Here we assessed the localization in membrane domains of the epitope-tagged, fluorescent version of thyrotropin-releasing hormone receptor (VSV-TRH-R-GFP) expressed in HEK293 cells. Our comparison of three different methods of cell fractionation (detergent extraction, alkaline treatment/sonication and mechanical homogenization) indicated that the dominant portion of plasma membrane pool of the receptor was totally solubilized by Triton X-100 and its distribution was similar to that of transmembrane plasma membrane proteins (glycosylated and non-glycosylated forms of CD147, MHCI, CD29, CD44, transmembrane form of CD58, Tapa1 and Na,K-ATPase). As expected, caveolin and GPI-bound proteins CD55, CD59 and GPI-bound form of CD58 were preferentially localized in detergent-resistant membrane domains (DRMs). Trimeric G proteins G(q)alpha/G(11)alpha, G(i)alpha1/G(i)alpha2, G(s)alphaL/G(s)alphaS and Gbeta were distributed almost equally between detergent-resistant and detergent-solubilized pools. In contrast, VSV-TRH-R-GFP, Galpha, Gbeta and caveolin were localized massively only in low-density membrane fragments of plasma membranes, which were generated by alkaline treatment/sonication or by mechanical homogenization of cells. These data indicate that VSV-TRH-R-GFP as well as other transmembrane markers of plasma membranes are excluded from TX-100-resistant, caveolin-enriched membrane domains. Trimeric G protein G(q)alpha/G(11)alpha occurs in both DRMs and in the bulk of plasma membranes, which is totally solubilized by TX-100.  相似文献   

5.
The endothelium is a metabolically active organ that regulates the interaction between blood or lymph and the vessel or the surrounding tissue. Blood endothelium has been the object of many investigations whereas lymphatic endothelium biology is yet poorly understood. This report deals with a proteomic approach to the characterization and comparative analysis of lymphatic and blood vessel endothelial cells (ECs). By 2-DE we visualized the protein profiles of EC extracts from the thoracic aorta, inferior vena cava, and thoracic duct of Bos taurus. The three obtained electropherograms were then analyzed by specific software, and 113 quantitative and 25 qualitative differences were detected between the three endothelial gels. The cluster analysis of qualitative and quantitative differences evidenced the protein pattern of lymphatic ECs to be more similar to the venous than to the arterial one. Moreover, venous ECs were interestingly found showing a protein expression profile more similar to the lymphatic ECs than to the arterial ones. We also identified 64 protein spots by MALDI-TOF MS and ESI-IT MS/MS and three reference maps of bovine endothelium were obtained. The functional implications of the identified proteins in vascular endothelial biology are discussed.  相似文献   

6.
Human umbilical vein endothelial cells (HUVEC) are widely used as a source of endothelial cells (EC). However, HUVEC characteristics cannot be extrapolated to other types of EC, particularly microvascular ECs. Our objective was to compare the proteomes of microvascular ECs and HUVEC. Proteomes of HUVEC and human microvascular pulmonary EC (HMVEC-P) and dermal EC (HMVEC-D) from healthy Caucasian donors were compared by 2D DIGE and MS. Fatty acid binding proteins 4 and 5 were among the 159 and 30 proteins spots found to have at least twofold change in expression between HUVEC and HMVEC-D and between HUVEC and HMVEC-P samples, respectively. Eight protein spots showed twofold changed expression between HMVEC-D and HMVEC-P samples. Ingenuity? analysis revealed that proteins differentially expressed between HUVEC and HMVEC-D samples interact with retinoic acid. In vitro tubulogenesis assays showed a differential effect of retinoic acid between HUVEC and HMVEC. Moreover, serum IgG from patients with a rare vascular disease, systemic sclerosis, showed distinct reactivity profiles in HUVEC and HMVEC-D protein extracts. The proteome profiles of HUVEC and microvascular EC differ noticeably, which reflects distinct biological properties and influence immune recognition.  相似文献   

7.
Proteomic profiling of endothelial cells in human lung cancer   总被引:1,自引:0,他引:1  
Genomic and proteomic analysis of normal and diseased tissues have yielded an abundance of molecular information for diagnostic and potential therapeutic targets. Changing the target of analysis from poorly accessible cells within tissues to easily accessible vascular endothelium has theoretical advantages in tissue-specific targeting. In this study, we sought to map a large-scale proteome of microvascular endothelium in human non-small cell lung cancer (NSCLC) and normal lung tissues, and identify lung cancer-related endothelial cell (EC)-selective proteins. Endothelial cells were isolated within NSCLC tissues and adjacent-normal lung tissue of lung cancer patients by using CD31-immunomagnetic beads. The complex proteins from the ECs were separated by one-dimensional gel electrophoresis, and the proteins in each gel band were digested by trypsin. Peptides were separated by online reverse-phase liquid-chromatography and analyzed by electrospray ionization (ESI) ion trap tandem mass spectrometry. Approximately 600-1000 proteins were identified in each individual sample. Five patient cases of paired individual data, extracted from the protein identification data sets of both normal- and cancer-derived ECs, were analyzed by subtractive proteomics. An average of 300 proteins was specifically identified from each lung cancer-derived EC isolate, compared to normal lung-derived ECs. With the use of several comparative analyses, we identified among those 300 proteins, 16 common candidate proteins that were detected in at least 3 of 5 cases specific to lung cancer-derived ECs. Proteins selectively identified in cancer-derived ECs, including coatomer protein complex, subunit gamma (COPG), and peroxiredoxin 4 (PRDX4), were validated by Western blot analysis. In an additional experiment in which 16 cancer samples were analyzed by immunohistochemistry, PRDX4, thymopoietin (TMPO), and COPG were confirmed to be abundantly expressed in lung cancer-derived ECs and in cancerous lung cells. Further ongoing analysis of these 16 candidate proteins will determine their potential applicability to NSCLC-specific diagnosis and therapeutics.  相似文献   

8.
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.  相似文献   

9.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

10.
Acute administration of 17beta-estradiol (E(2)) exerts antiatherosclerotic effects in healthy postmenopausal women. The vasoprotective action of E(2) may be partly accounted for by a rapid increase in nitric oxide (NO) levels in endothelial cells (ECs). However, the signaling mechanisms producing this rise are unknown. In an attempt to address the short-term effect of E(2) on endothelial NO production, confluent bovine aortic endothelial cells (BAECs) were incubated in the absence or presence of E(2), and NO production was measured. Significant increases in NO levels were detected after only 5 min of E(2) exposure without a change in the protein levels of endothelial NO synthase (eNOS). This short-term effect of estrogen was significantly blunted by various ligands which decrease intracellular Ca(2+) concentration. Furthermore, plasma membrane-impermeable BSA-conjugated E(2) (E(2)BSA) stimulated endothelial NO release, indicating that in the current system the site of action of E(2) is on the plasma membrane rather than the classical nuclear receptor. The partial antagonist tamoxifen did not block E(2)-induced NO production; however, a pure estrogen receptor alpha (ERalpha) antagonist ICI 182,780 completely inhibited E(2)-stimulated NO release. The binding of E(2) to the membrane was confirmed using FITC-labeled E(2)BSA (E(2)BSA-FITC). Western blot analysis showed that plasmalemmal caveolae possess ERalpha in addition to well-known caveolae-associated proteins eNOS and caveolin. This study demonstrates that the nongenomic and short-term effect of E(2) on endothelial NO release is Ca(2+)-dependent and occurs via ERalpha localized in plasmalemmal caveolae.  相似文献   

11.
Characteristics of endoplasmic reticulum-derived transport vesicles   总被引:21,自引:6,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,126(5):1133-1148
We have isolated vesicles that mediate protein transport from the ER to Golgi membranes in perforated yeast. These vesicles, which form de novo during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins. Thus, lumenal and membrane proteins in the ER are sorted prior to transport vesicle scission. Inhibition of Ypt1p-function, which prevents newly formed vesicles from docking to cis-Golgi membranes, was used to block transport. Vesicles that accumulate are competent for fusion with cis-Golgi membranes, but not with ER membranes, and thus are functionally committed to vectorial transport. A 900-fold enrichment was developed using differential centrifugation and a series of velocity and equilibrium density gradients. Electron microscopic analysis shows a uniform population of 60 nm vesicles that lack peripheral protein coats. Quantitative Western blot analysis indicates that protein markers of cytosol and cellular membranes are depleted throughout the purification, whereas the synaptobrevin-like Bet1, Sec22, and Bos1 proteins are highly enriched. Uncoated ER-derived transport vesicles (ERV) contain twelve major proteins that associate tightly with the membrane. The ERV proteins may represent abundant cargo and additional targeting molecules.  相似文献   

12.
In carbon tetrachloride-induced liver cirrhosis, diminution of hepatic endothelial nitric oxide synthase (eNOS) activity may contribute to impaired hepatic vasodilation and portal hypertension. The mechanisms responsible for these events remain unknown; however, a role for the NOS-associated proteins caveolin and calmodulin has been postulated. The purpose of this study is to characterize the expression and cellular localization of the NOS inhibitory protein caveolin-1 in normal rat liver and to then examine the role of caveolin in conjunction with calmodulin in regulation of NOS activity in cholestatic portal hypertension. In normal liver, caveolin protein is expressed preferentially in nonparenchymal cells compared with hepatocytes as assessed by Western blot analysis of isolated cell preparations. Additionally, within the nonparenchymal cell populations, caveolin expression is detected within both liver endothelial cells and hepatic stellate cells. Next, studies were performed 4 wk after bile duct ligation (BDL), a model of portal hypertension characterized by prominent cholestasis, as evidenced by a significant increase in serum cholesterol in BDL animals. After BDL, caveolin protein levels from detergent-soluble liver lysates are significantly increased as assessed by Western blot analysis. Immunoperoxidase staining demonstrates that this increase is most prominent within sinusoids and venules. Additionally, caveolin-1 upregulation is associated with a significant reduction in NOS catalytic activity in BDL liver lysates, an event that is corrected with provision of excess calmodulin, a protein that competitively binds eNOS from caveolin. We conclude that, in cholestatic portal hypertension, caveolin may negatively regulate NOS activity in a manner that is reversible by excess calmodulin.  相似文献   

13.
Adhesion of calcium oxalate monohydrate (COM) crystals onto apical surface of renal tubular epithelial cells is a crucial mechanism for crystal retention, leading to kidney stone formation. Various proteins on apical membrane may bind to COM crystals; however, these crystal-binding proteins remained unidentified. The present study therefore aimed to identify COM crystal-binding proteins on apical membrane of distal renal tubular epithelial cells. Madin-Darby Canine Kidney (MDCK) cells were cultivated to be polarized epithelial cells and apical membrane was isolated from these cells using a peeling method established recently. Enrichment and purity of isolated apical membrane were confirmed by Western blot analysis for specific markers of apical (gp135) and basolateral (Na(+)/K(+)-ATPase) membranes. Proteins derived from the isolated apical membrane were then resuspended in artificial urine and incubated with COM crystals. The bound proteins were eluted, resolved by SDS-PAGE, and analyzed by Q-TOF MS and MS/MS, which identified 96 proteins. Among these, expression and localization of annexin II on apical surface of MDCK cells were confirmed by Western blot analysis, immunofluorescence staining, and laser-scanning confocal microscopic examination. Finally, the function of annexin II as the COM crystal-binding protein was successfully validated by COM crystal-binding assay. This large data set offers many opportunities for further investigations of kidney stone disease and may lead to the development of new therapeutic targets.  相似文献   

14.
As inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, statins have pleiotropic vascular-protective effects, such as anti-inflammatory and antioxidative effects. We investigated the short-term beneficial effects of statins on modulating the translocation of lipid-raft-related proteins in endothelial cells (ECs). Human umbilical vein ECs were treated with atorvastatin for 30 min or 2 h; lipid-raft proteins were isolated and examined by quantitative proteome assay. Functional classification of identified proteins in lipid rafts revealed upregulated antioxidative proteins; downregulated proteins were associated with inflammation and cell adhesion. Among proteins verified by Western blot analysis, endoplasmic reticulum protein 46 (ERp46) showed increased level in lipid rafts with atorvastatin. Further, atorvastatin inhibited the activation of membrane-bound NADPH oxidase in both untreated and angiotensin II-treated ECs, as shown by reduced reactive oxygen species production. Co-immunoprecipitation and immunofluorescence experiments revealed that atorvastatin increased the association of ERp46 and Nox2, an NADPH oxidase isoform, in lipid rafts, thereby inhibiting Nox2 assembly with its regulatory subunits, such as p47phox and p67phox. Our results reveal a novel antioxidative role of atorvastatin by promoting the membrane translocation of ERp46 and its binding with Nox2 to inhibit Nox2 activity in ECs, which may offer another insight into the pleiotropic functions of statins.  相似文献   

15.
Many signaling proteins are targeted to low density, sphingomyelin- and cholesterol-enriched membranes, also called lipid rafts. These domains organize receptor-mediated signaling events at the plasma membrane. Fatty acylation is one mechanism for targeting proteins to rafts. It was therefore of interest to determine if protein palmitoyltransferase activity is also present in these domains. In this study, protein palmitoyltransferase activity, assayed using G-protein alpha subunits as a substrate, was found to be highly enriched in low density membranes derived from cells that express caveolin as well as those that do not. Depletion of cellular cholesterol with the drug methyl-beta-cyclodextrin resulted in inhibition of palmitoyltransferase activity and a redistribution of the remaining activity to membranes of higher density. This effect was reversed by adding cholesterol to cyclodextrin-treated cells. When reconstituted into cell membranes, the population of purified recombinant G(alphai) that was palmitoylated was highly enriched in the low density membrane fractions, whereas the bulk unmodified G(alphai)-protein was largely excluded. This effect required palmitoyltransferase activity and was abolished if the palmitoylated cysteine was mutated. Thus, palmitoyltransferase facilitates the enrichment of fatty acylated signaling molecules in plasma membrane subdomains.  相似文献   

16.
Little is known about the regulatory mechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form and calcium-independent intracellular phospholipase A(2) (iPLA(2)). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-alpha (PKCalpha) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA(2), PKCalpha, and ERK1/2. By confocal microscopy, activation of PKCalpha in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA(2) in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCalpha contributes to endothelial ERK1/2 and cPLA(2) phosphorylation induced by either soluble factors or direct cell-to-cell contact, and that the PKCalpha-cPLA(2) pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation.  相似文献   

17.
A membrane fraction with sarcolemmal properties was purified from the smooth muscle layers (myometrium) of rat uterus by successive differential and equilibrium centrifugation in sucrose. The putative sarcolemmal fraction was identified by iodination with [125I]iodosulfanilic acid, had an equilibrium density of 1.15, and was enriched in enzyme activities usually associated with the plasma membrane including 5′-nucleotidase (EC 3.1.3.5) and (Na+ + K+) ATPase (EC 3.6.1.3). These membranes were free of mitochondrial or nuclear membrane contamination, suggesting the relative enrichment of sarcolemmal membranes in the fraction. Proteins of the membranes were heterogeneous with respect to molecular weight, but only a few were labelled when intact muscle was radioiodinated. Uniform resistance of sarcolemmal proteins to trypsin digestion and salt extraction suggested many are tightly bound or intrinsic membrane proteins and was a further indication of the homogeneity of membranes in this fraction.  相似文献   

18.
Zhang W  Zhao C  Wang S  Fang C  Xu Y  Lu H  Yang P 《Proteomics》2011,11(17):3482-3490
This study developed a simple and rapid purification method for plasma membrane with high yields from adherent cells. The plasma membrane (PM) sheets could be absorbed specifically by the cationic silica–magnetite nanocomposites (CSMN) under acidic conditions, and recovered directly in cell‐lysis‐buffer with no need for precipitation. The binding between CSMN and PM sheets was confirmed by electron microscopy. Western blot analysis demonstrated a >10‐fold relative enrichment factor. Up to 422 integral membrane proteins were identified from 107 Huh7 cells. Notably, we found 29 Ras family proteins by classification according to their biological functions. The whole enrichment procedure took <30 min. The CSMN‐based procedure demonstrates a simple, economical and efficient enrichment of integral PM proteins in proteomic study.  相似文献   

19.
Recent evidence supports the existence of a plasma membrane ER. In many cells, E2 activates signal transduction and cell proliferation, but the steroid inhibits signaling and growth in other cells. These effects may be related to interactions of ER with signal-modulating proteins in the membrane. It is also unclear how ER moves to the membrane. Here, we demonstrate ER in purified vesicles from endothelial cell plasma membranes and colocalization of ERalpha with the caveolae structural coat protein, caveolin-1. In human vascular smooth muscle or MCF-7 (human breast cancer) cell membranes, coimmunoprecipitation shows that ER associates with caveolin-1 and -2. Importantly, E2 rapidly and differentially stimulates ER-caveolin association in vascular smooth muscle cells but inhibits association in MCF-7 cells. E2 also stimulates caveolin-1 and -2 protein synthesis and activates a caveolin-1 promoter/luciferase reporter in smooth muscle cells. However, the steroid inhibits caveolin synthesis in MCF-7 cells. To determine a function for caveolin-ER interaction, we expressed caveolin-1 in MCF-7 cells. This stimulated ER translocation to the plasma membrane and also inhibited E2-induced ERK (MAPK) activation. Both functions required the caveolin-1 scaffolding domain. Depending upon the target cell, membrane ERs differentially associate with caveolin, and E2 differentially modulates the synthesis of this signaling-inhibitory scaffold protein. This may explain the discordant signaling and actions of E2 in various cell types. In addition, caveolin-1 is capable of facilitating ER translocation to the membrane.  相似文献   

20.
Endothelial cells (EC) are covered with cell-borne proteoglycans and glycoproteins. Blood plasma proteins (e.g., albumin) adsorb to this glycocalyx forming a complex endothelial surface layer (ESL). We determined the molecular mobility of albumin by electron spin resonance (ESR) in the presence and absence of ECs to analyze interactions with the ESL. Albumin was spin labeled with 5- or 12-4,4-dimethyloxazolidine-N-oxyl (DOXYL)-stearic acid yielding information on the mobility of the molecular surface (5-DOXYL) or the entire protein (12-DOXYL). EC cultures grown on glass coverslips were immersed in labeled albumin and placed in the temperature-regulated cavity of an ESR spectrometer. Alternatively, ECs were labeled and then exposed to native albumin. At 37 degrees C, rotational correlation times determined by modified saturation transfer ESR (ST-ESR) were 26 and 48 ns for 5-DOXYL- and 12-DOXYL-labeled albumin, respectively. Presence of ECs increased rotational correlation time values for 5-DOXYL-stearic acid to 37 ns but not for 12-DOXYL-stearic acid. Albumin was able to completely take up the label from labeled EC within 2 min. The present study shows that modified ST-ESR can be used to determine the mobility of biological macromolecules interacting with cellular surfaces. Reduction in albumin surface mobility in the presence of EC at unchanged mobility of protein proper and fast removal of labeled fatty acids from EC membranes indicate rapid transient interactions between albumin surface and ESL but no rigid incorporation of albumin into a macromolecular network that would interfere with its transport function for poorly water-soluble substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号