首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Channel Country, a region of wide fluvial plains criss-crossed by a reticulate pattern of anastomosing channels, and the adjacent sand dunes and clay pans of the Lake Eyre drainage basin occupy an area of 1.3 × 106 km2 of internal drainage in the arid east-central part of Australia. Beneath a surface of skin of mud, the sediment of the Channel Country is sand and some mud in the floodplain, as well as in levees and channels. The surface mud represents the overbank deposits of meandering channels that are superimposed on sheet sands of a relict braided system.With the other sediments (aeolian sand and lacustrine mud) of the Lake Eyre drainage basin, the Channel Country sediments represent the latest phase of deposition of the Cainozoic Birdsville Basin, which was initiated as an interior basin behind the dismembered rifted arch of the divergent Pacific margin. In their depositional and tectonic setting, the arid sediments of central-eastern Australia are modern analogues of the Mesozoic desert sands and other non-marine sediments that were deposited behind the pre-breakup arch and post-breakup half-arch of South America. The preceding Mesozoic Great Artesian Basin of central-eastern Australia contains volcanogenic sediment and was covered for a short time by an epeiric sea; its deposition was influenced by an uplift along the convergent Pacific margin, and it is analogous to other Gondwana basins in Antarctica, southern Africa, and South America that were yoked to the convergent Pacific margin.  相似文献   

2.
Orphan Basin is a deep-water basin on the continental margin off Newfoundland, which throughout the late Quaternary received proglacial sediment from local ice that crossed the continental shelf. Sediment from more distant sources was transported southward in the Labrador Current as proglacial plumes and in icebergs. Five sedimentary facies related to glacial processes are distinguished in cores recovered from Orphan Basin: hemipelagic sediment, nepheloid-layer deposits (layered mud), beds rich in ice-rafted detritus (IRD), sand and mud turbidites, and glaciogenic debris-flow deposits. IRD-rich beds correspond to periods of intensified iceberg calving, and layered mud, turbidites, and glaciogenic debris-flow deposits with glacial meltwater discharge.

In the Late Wisconsinan, eight periods of meltwater discharge and iceberg calving from the Newfoundland ice sheet are interpreted from the sediment facies in Orphan Basin. These discharges coincide with the terminations of the colder periods of the D–O cycles recorded in Greenland ice cores. The oldest minor meltwater event (27.5–28.5 cal ka) corresponds to the first Late Wisconsinan ice advance across the Grand Banks and NE Newfoundland Shelf. The following three meltwater discharges (23–23.5, 23.8–24.5, and 25–27 cal ka) deposited sand turbidites and glaciogenic debris-flow deposits seaward of Trinity Trough, which was occupied by an ice stream at this time, and mud turbidites in the southern part of the basin derived from a mid-shelf ice margin on the Grand Banks. Four periods of meltwater discharge occurred during the deglaciation and are centered at 15, 18.5, 19.75, and 20.75 cal ka. The youngest is correlated to Heinrich event 1. In the literature, the 18.5 and 20.75 cal ka events have been recorded in multiple glacial settings in the North Atlantic, and therefore, are interpreted as large-scale events of meltwater discharge and iceberg calving, but in Orphan Basin the 19.75 cal ka event is also of similar scale.  相似文献   


3.
Summary The epicontinental pelagic to hemipelagic Upper Cenomanian and Lower Turonian successons of the Lower Saxony Basin (northwestern Germany) are represented by the Rotpl?ner facies on swells (multicolored marls and marly limestones) and the basinal Black Shales facies (marly limestones (Turbidites), black shales) in the local basins. Facies units are described with their lateral and vertical variation from both depositional environments and their correlation is discussed. The distinct Cenomanian-Turonian boundary facies is due to dilution of pelagic carbonate by siliciclastic material, volcanic ashfall, and substantial changes in carbonate, sedimentation rates by about an order of magnitude. The observed sediment geometries origin from preservation of sediments in areas where normal faults occur and erosion of the formerly deposited units in unfaulted areas (preservation of relicts). Erosion and redeposition on swells occurs in thin (<50 cm thick) debris flow and mud flow channels (1–100 m wide), sheet flows, and by turbidity currents. During the Upper Cenomanian the sediment transport is governed by gravity flow which is increasingly superimposed by storm deposition during the Lower Turonian. Lense-shaped tempestites (probably below average storm wave base) occur at the base of the Turonian (entry ofMytiloides hattini) in morphologically highest swell positions and migrate across the entire basin until the late Lower Turonian. The basinal facies is characterised by laminated and biotrubated black shales and mud turbidites that vary over short distances. Laminae show graded bedding and erosive contacts and were deposited by turbidity currents. Intercalated marly limestones are mud turbidities (some mudflows) that are coarsening upwards until the early Lower Turonian. Larger slides occurred predominantly in the late Upper Cenomanian. The sediment distribution is closely related to sea level changes and reflects short- and long-term fluctuations generating comparable stratigraphic trend in the sections, although basin and swell facies are always clearly distinguished. Lokal basin margins (e.g. primary fordeeps of sal domes) were probably limited by larger normal faults that prevented facies gradation between both depositional environments.  相似文献   

4.
黄河流域是重要的水源涵养和生态屏障区,研究其水源供给服务对实现黄河流域高质量发展和生态环境保护具有重要意义。本研究基于InVEST模型和情景分析法,以土地利用覆被、气象及土壤等数据作为输入,分析了1995—2015年黄河流域产水量的时空格局以及降水变化和土地利用变化对流域产水量的影响,并探讨产水量对二者的响应。结果表明:1995—2015年,黄河流域产水深度增加,增量为24.34 mm,产水高值区集中在西部和西南部,低值区集中在西北区域,产水深度空间格局特征变化不明显;黄河流域三级流域中,龙羊峡以上流域产水量最高,约117 亿m3·a-1,是黄河流域主要产水区,兰州至河口流域产水量最低,约0.44 亿m3·a-1;整个流域中永久冰川及雪地的平均产水深度最大,草地是全流域产水总量的主要贡献地类,提供了总产水量的62.6%;降水对产水量的影响比较显著,土地利用/覆被变化对产水量的影响较小。  相似文献   

5.
The purpose of this investigation is to encourage a fresh look at Pleistocene Beringia. Heretofore, flooding of Bering Strait has been cited as the only barrier to migration, with marine sea transgressions being a “sea gate” that closed off migration during glacial interstadials and interglaciations. However, the possibility exists that glacial advances were also barriers, with marine ice transgressions being an “ice gate” that closed off migration during glacial stadials and glacial maxima. This possibility proceeds from the Marine Ice Transgression Hypothesis (MITH), which states that marine ice sheets form on the broad Arctic continental shelf of Northern Hemisphere continents when sea ice thickens, grounds and domes in shallow water, and then transgresses landward as continental ice sheets and seaward as floating ice shelves (Hughes, 1987). Landward transgression is onto coastal lowlands. During Pleistocene glaciations, a marine ice sheeet extending from Spitsbergen to Greenland may have transgressed the circumpolar continental landmass at its lowest and narrowest gap, central Beringia, and calved into the Pacific Ocean.

Four models of Beringian glaciation are presented, based on the distinction between marine glaciation and highland glaciation. Central Beringia was glaciated only in highlands in the traditional model (Hopkins et al., 1982), was also glaciated by a self-sustaining ice shelf floating over the deep ocean basins of the Bering Sea in the model by Grosswald and Vozovik (1984), was glaciated by a marine ice sheet that covered highlands, the continental shelf, and supplied the ice shelf in a model for maximum Pleistocene glaciation, and was glaciated by a marine ice sheet in the Chukchi Sea that merged with highland glaciers, transgressed the continental shelf of the western Bering Sea, and calved into the southern Bering Sea along the edge of the continental shelf in a model for the last glaciation. Field tests are suggested to assess the viability of these four models. The first model is already established for highland glaciation in Alaska, but less established in Siberia. The last model should be the easiest to evaluate for marine glaciation. The last model limits human migration across the Beringian land bridge to brief intervals between stadials and interstadials of the last glaciation cycle, when both the ice gate and the sea gate were opened to human migration. This model can influence the sea change now underway among Quaternary scientists studying peopling of the Americas, based on the archaeological, linguistic and ethnic diversity among native American populations.  相似文献   


6.
《Palaeoworld》2020,29(4):769-788
The marine fossil assemblages of the Pliocene of south Spain constitute the record of the marine fauna that colonised the western part of the Mediterranean after the Messinian Salinity Crisis. This work focuses on the analysis of lithofacies and fossil assemblages including trace fossils, invertebrates, and vertebrates with special attention to taphonomic features, for interpreting palaeoenvironmental conditions in the Vera Basin (SE Spain). The sedimentary sequences of the northern region of the Vera Basin display diverse stratigraphical, sedimentological, and palaeontological features that correspond to the evolution of a fan-delta in a narrow basin. The Vera Basin was characterised by shallow-marine shelf conditions during the early-mid Pliocene (Cuevas Formation). The basin emergence with the development of Gilbert-type fan deltas (Vera Member), and a protected, partially-enclosed marine embayment (Almanzora Member) occurred during the mid-late Pliocene due to regional uplift and movements of the Palomares strike-slip Fault along the eastern basin margin. The progradation of the central fan-delta lobes and the interaction with marginal fan-delta resulted in the partitioning of the basin that formed a small sub-basin with restricted stagnant conditions that favoured a Konservat Fossil-Lagerstätte. The high input of siliciclasts due to the uplift context of the margins of the basin favoured a high sedimentation rate and the fast burial of vertebrate remains. Fossil marine mammals occurs from shallow shelf deposits (Cuevas Formation) to bottomset (Cuevas Formation-Vera Member transition) and lower part of the clinoforms in the foreset (Vera Member). Cetacean remains are usually recorded not only in the relatively deep-water silty marls and sandy marls of the outer shelf and distal facies of the fan-delta (Espiritu Santo Formation), but also in the shallower coarse sands and conglomerates (Cuevas Formation and Espiritu Santo Formation). Sirenian remains, in contrast, are only recorded in coarse sand facies (Cuevas Formation and Espiritu Santo Formation) associated to charcoal wood fragments deposited in shallow waters near the shoreline. This narrow and relatively protected basin is interpreted as an area of reproduction and nursery of juveniles on the basis of the presence of cetaceans.  相似文献   

7.
Gyrfalcons Falco rusticolus use the same nest-sites over long periods of time, and in the cold dry climate of Greenland, guano and other nest debris decay slowly. Nineteen guano samples and three feathers were collected from 13 Gyrfalcon nests with stratified faecal accumulation in central-west and northwest Greenland. Samples were 14C dated, with the oldest guano sample dating to c . 2740–2360 calendar years (cal yr) before present (BP) and three others were probably > 1000 cal yr BP. Feather samples ranged from 670 to 60 cal yr BP. Although the estimated age of material was correlated with sample depth, both sample depth and guano thickness gave a much less reliable prediction of sample age than use of radiocarbon dating on which the margin of error was less. Older samples were obtained from sites farther from the current Greenland Ice Sheet and at higher elevations, while younger samples were closer to the current ice sheet and at lower elevations. Values for δ13C showed that Gyrfalcons nesting farther from the Greenland Ice Sheet had a more marine diet, whereas those nesting closer to the ice sheet (= further inland) fed on a more terrestrial diet. The duration of nest-site use by Gyrfalcons is a probable indicator of both the time at which colonization occurred and the palaeoenvironmental conditions and patterns of glacial retreat. Nowhere before has such extreme long-term to present use of raptor nest-sites been documented.  相似文献   

8.
Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 μg C g−1 year−1) and the high content of organic carbon within the debris (1.7–4.5%, equivalent to 8500–22 000 μg C g−1 debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity.  相似文献   

9.
Summary The Asselian-Sakmarian strata of the Fosheim-Hamilton subbasin represent a distinct 15 000 km2 depocentre located at the northeast margin of the main Sverdrup Basin in the Canadian Arctic Archipelago. Approximately 35 high-frequency cycles composed mainly of platformal carbonates with subaqueous evaporites accumulated at a time of renewed rifting activity in this subbasin. A general depositional model based on the facies analysis of the Asselian-Sakmarian strata shows that the carbonate platforms surrounding the Fosheim-Hamilton subbasin were segmented by the position of critical interfaces including the: 1) base of the fairweather wave abrasion zone; 2) base of the storm wave abrasion zone; and 3) base of the photic zone. The base of the fairweather wave abrasion zone divided the platforms into two broad parts; an inner shelf with a relatively quiet, semi-restricted lagoon and more agitated, open marine barries and shoals and an open marine mid-shelf with numerous reefal and non-reefal subenvironments extending from the base of fairweather wave abrasion zone to below the photic zone. Outer shelf and associated slope and basin were not present within the Fosheim-Hamilton subbasin but were present farther west along the margin of the main Sverdrup Basin.  相似文献   

10.
In the Moroccan Atlas, sedimentary deposits provide important data on reef events that characterize the Jurassic period. Recent work allows us to enhance knowledge of the Jurassic reefs in the Atlas, in particular their age, character and palaeogeographic distribution. Numerous localities with sponge-microbial mud mounds, coral reefs, and lithiotid bioherms are recorded from the Middle and High Atlas regions. These different biogenic constructions occupy different palaeogeographic settings: on the top of tilted blocks within the basin center; in slightly deeper positions, at the basin platform junction; and on adjacent platforms in the middle of the coastal area. The main episodes of reef building span nearly 30 million years, as follows: (1) Sinemurian, (2) early Pliensbachian, (3) late Toarcian, (4) Aalenian–early Bajocian (pars), and (5) late Bajocian. These five distinct reef events can be linked with general fluctuations of sea level and tectonism, and have palaeoclimatic implications.  相似文献   

11.
The distribution pattern of calcareous nannofossils was analysed across the Middle-Late Jurassic transition in the French Subalpine Basin (south-eastern France). This basin is characterized in the hemipelagic-pelagic domain by a continuous sedimentary succession, allowing a good biostratigraphic resolution for this time interval. The nannofossil assemblages are consistently dominated by Watznaueria britannica. However, major changes in trophic and paleoenvironmental conditions are recorded across the Middle-Late Jurassic transition. An increase in marine primary productivity and cooling of surface waters is recorded across the Callovian-Oxfordian boundary, as already shown in the higher latitude setting of the eastern Paris Basin. Increased precipitation and runoff under contrasting seasonal climatic conditions (monsoon-type) has led to eutrophication of marine surface waters in the French Subalpine Basin at this period. Then, decreased runoff and associated nutrients certainly linked to drier climatic conditions lead to a decrease in calcareous nannofossil productivity during the middle part of the Early Oxfordian (mariae-cordatum ammonite Zone transition). At the Early-Middle Oxfordian transition, more favourable conditions for the nannofossil community (warmer and mesotrophic surface waters) prevailed. The pelagic (nannofossil) carbonate contribution is limited, and the carbonate fraction is predominantly of nektonic/benthic origin at the Callovian-Oxfordian transition and of allochthonous origin from carbonate platforms at the Early Oxfordian-Middle Oxfordian transition.  相似文献   

12.
Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non‐marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian‐margin strata of the northern Tethys Himalaya and Asian‐margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure formations. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palaeogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depression. They comprise mostly neritic and coastal lagoon facies of the Tethyan realm. Palaeontological evidence suggests that the Paleocene/Eocene boundary here is in middle of the Qimugen Formation. The Tarim Basin was largely drained by Late Oligocene. To the east, the marine offshore Palaeogene strata are widespread in the North Taiwan and East Zhejiang depressions of the continental shelf basin of East China Sea. Abundant fossils including foraminifera, calcareous nannofossils, ostracods, pollen and bivalves occur in the marine environment. Biostratigraphically, the sequence is well correlated with the international planktonic foraminiferal and nannofossil zonations.  相似文献   

13.
The upper Ordovician succession of Jordan was located 60°S, less than 100 km from the Hirnantian ice sheet margin. New graptolite dates indicate glaciation ended in Jordan in the late Hirnantian (persculptus Biozone). The succession records two glacial advances within the Ammar Formation and the subsequent deglaciations. Organic-rich black shales (Batra Formation) form part of the final deglacial transgressive succession that in-filled an existing low stand glacial continental shelf topography. The base of the black shale is coincident with the maximum flooding surface. During transgression, interfluves and sub-basin margins were breached and black shale deposition expanded rapidly across the region. The top of the black shales coincides with peak highstand. The “expanding puddle model” (sensu Wignall) for black shale deposition, adapted for the peri-glacial setting, provides the best explanation for this sequence of events.

We propose a hypothesis in which anoxic conditions were initiated beneath the halocline in a salinity stratified water column; a fresher surface layer resulted from ice meltwater generated during early deglaciation. During the initial stages of marine incursion, nutrients in the monimolimnion were isolated from the euphotic zone by the halocline. Increasing total organic carbon (TOC) and δ13Corg up section indicates the organic carbon content of the shales was controlled mainly by increasing bioproductivity in the mixolimnion (the Strakhov model). Mixolimnion nutrient levels were sustained by a continual and increasing supply of meltwater-derived nutrients, modulated by obliquity changes in high latitude insolation. Anoxia was sustained over tens to hundreds of thousands of years. The formation of black shales on the north Gondwana shelf was little different to those observed in modern black shale environments, suggesting that it was the nature of the Ordovician seas that pre-disposed them to anoxia.  相似文献   


14.
Fossiliferous mounds of carbonate mud are a distinctive facies in the middle Chazy Group (Crown Point Formation) at Isle La Motte, Lake Champlain. The mounds are surrounded by bedded calcarenite of spar-cemented pelmatozoan debris. Channels which cut into the mounds during mound growth are filled with the same calcarenite. The mud-free intermound rocks and the mound biota suggest agitated, normal marine shallow-water environments. The principal lime-secreting organisms within the mounds are stromatoporoids, calcareous algae, tabulate corals, sponges, and bryozoans. Each mound is dominated in terms of biomass by one of three groups: stromatoporoids, calcareous algae, and bryozoans. Most of the mound biota first appear at the base of the Crown Point Formation. In the lower Crown Point Formation the organisms increase in number and species. Both changes in the biota are related to periods of shallowing of the Chazy sea which are also reflected in the character of the carbonate sands.  相似文献   

15.
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best‐fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life‐stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at‐risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.  相似文献   

16.
黔北桐梓的戴家沟剖面和狮溪剖面志留系兰多维列统特列奇阶下部的韩家店组出露完好,该组泥岩、粉砂岩中夹有厚度1—3m、直径4—7m的小型点礁。礁核相多具典型的障积格架岩特征,但生长时限短暂,群落分异度低,仅见床板珊瑚、单体四射珊瑚、苔藓虫和海百合茎,礁间为珊瑚、苔藓虫和海百合茎碎片堆积的滩相,伴生丰富的遗迹化石。在陆源碎屑快速沉积的背景下,浑浊海水频繁的富营养化过程限制了礁体纵横向生长和朝高分异度群落发展的可能性。  相似文献   

17.
In 2002, section B of the Larsen ice shelf, off of the Eastern Antarctic Peninsula, collapsed and created the opportunity to study whether the changes at the sea surface left evidence in the sedimentary record. Biogenic silica is major constituent of Antarctic marine sediment, and its presence in the sediment column is associated with diatom production in the euphotic zone. The abundance of diatom valves and the number of sponge spicules in the biogenic silica was analyzed to determine how the origin of the biogenic silica in the upper layers of the sediment column responded to recent environmental changes. Diatom valves were present only in the upper 2 cm of sediment, which roughly corresponds to the period after the collapse of the ice shelf. In contrast, sponge spicules, a more robust form of biogenic silica, were also found below the upper 2 cm layer of the sediment column. Our results indicate that in this region most of the biogenic silica in the sedimentary record originated from sponge spicules rather than diatoms during the time when the sea surface was covered by the Larsen ice shelf. Since the collapse of the ice shelf, the development of phytoplankton blooms and the consequent influx of diatom debris to the seabed have shifted the biogenic silica record to one dominated by diatom debris, as occurs in most of the Antarctic marine sediment. This shift provides further evidence of the anthropogenic changes to the benthic habitats of the Antarctic and will improve the interpretation of the sedimentary record in Polar Regions where these events occur.  相似文献   

18.
吴贤涛 《古生物学报》2005,44(4):599-610
河口湾砂岩储层,在下切谷型油气勘探类型中极具潜在经济价值,因而引起众多沉积环境研究者的关注。河口湾是河水、海水相互作用的场所,具明显的三重沉积结构,即在河口湾内侧,河流淡水沉积具主导;在河口湾外侧,则以潮汐或波浪等海水水流沉积占优;而河口湾的中央地带,是海水和淡水汇合区,表现出咸水水体和低能环境的沉积特征。东濮凹陷沙河街组四段,低位期形成的下切谷和高位期转变成河口湾的过程,由沉积柱子中的海水生物痕迹、咸水生物痕迹及淡水生物痕迹记录下来,这些适应于不同水体的造迹生物所留下的痕迹,弥补了这一地区缺乏标志性实体化石带来的认识障碍,为识别其沉积环境真面目找到了新途径。由Cylindricum-Scoyenia为代表的淡水痕迹化石组合,以Tigillites和喜盐植物根迹为代表的咸水生物痕迹和以Thalassinoides,Teichichnus为代表的海水生物痕迹,在东濮凹陷沙河街组四段钻取的岩芯中多次出现,证实了那里河口湾沉积的三重结构和下切谷的存在。  相似文献   

19.
The Bengal Basin is known for the extensive development of a thick Cretaceous— Tertiary sedimentary sequence in the eastern part of India. The basin has undergone several phases of transgressions, regressions, periodic uplifts and localised negative movements throughout the period of its evolution. The sedimentation up to the end of the Eocene was largely under the influence of a major transgressive phase which was later replaced by a regressive phase on account of the uplift and resulting marine retreat. in this paper, an analysis of the microfaunal distribution, biofacies and sedimentary and tectonic history is made for reconstruction of the palaeoenvironmental conditions and palaeogeography of the Bengal Basin relating to the post-Eocene regressive phase of evolution.During the Oligocene—Early Miocene, the open marine conditions existing since the Eocene were progressively modified on account of the regression into more brackish, lagoonal and estuarine types. A typical prograding delta started to spread over a large part of the marginal area of the basin. The rocks of the Barail Group, formed under the transitional environments of the delta, are found to occur in almost all the major geo-provinces of the basin. The sedimentary environments and characteristics of the rocks were ultimately controlled by the configurations of the respective geo-provinces. The negative movements in the Miocene along certain marginal areas were associated with the marine transgressive phase giving rise to the Surma Group. This transgressive phase was, however, short lived and its impact was not equally felt in all areas. The northeastern region was still uplifted which favoured an almost continuous existence of the deltaic phase.By the end of Miocene a greater part of the basin underwent a strong tectonic upheaval which was possibly the precursor of the main Himalayan orogeny. The intermontane depressions formed in the uplifted areas were the depositional sites for the Tipam Group and younger beds in Plio-Pleistocene times. The rapidly eroded debris from the highlands spread over a wide area towards the south under the influence of the river system of the Ganga and Brahmaputra which has transformed the original basinal areas into a large modern delta complex.  相似文献   

20.
Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号