首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The accumulations of radioactive cyclic AMP elicited by adenosine, norepinephrine, and histamine in adenine-labeled vesicular entities of a particulate fraction from guinea pig cerebral cortex are greatly reduced as a result of prolonged preincubation. The presence of adenosine deaminase during preincubations largely prevents the loss of adenosine, norepinephrine and histamine responses. Adenosine deaminase was inactivated by deoxycoformycin prior to stimulation of cyclic AMP accumulation by adenosine or amines. If adenosine deaminase is not inactivated, responses to norepinephrine are not significant and histamine responses are reduced by 50%. Adenosine deaminase cannot restore responsiveness of the cyclic AMP-generating systems. It is proposed that, in particulate fractions of guinea pig cerebral cortex, low levels of adenosine cause a slow loss of receptors and/or coupling of receptors to cyclic AMP-generating systems.  相似文献   

2.
Histamine and the heart   总被引:1,自引:0,他引:1  
Histamine has been known as a cardiac stimulant for over 70 years. Work in our laboratory over the past decade has established that histamine receptors exist in the hearts of various species. The type of histamine receptor varies not only between species but also in the various regions of the heart. In the guinea pig heart H1 receptors are found in left atria and ventricles while H2 receptors are found in right atria and are the predominant histamine receptor in the ventricles. Rabbit atria contain both H1 and H2 receptors while the ventricles appear to possess only H1. Rat and cat heart do not seem to have histamine receptors and the positive inotropic and chronotropic effects elicited by histamine in cardiac preparations of these species are due to the release of noradrenaline. Dog heart contains H1 receptors while human heart has H2 receptors. In all cases H2 receptors are associated with adenylate cyclase and stimulation of such receptors results in an increase in cyclic AMP levels. H1 receptors are not associated with cyclic nucleotides in the heart. There are certain similarities between beta-adrenergic and H2-histaminergic receptors as well as between alpha-adrenergic and H1-histaminergic receptors. Stimulation of either histamine receptor must result in an increase in the free calcium ion concentration in the cardiac cell but the mechanisms involved are obviously different.  相似文献   

3.
Norepinephrine and serotonin augment by about 2-fold the accumulation of cyclic [3H]AMP elicited by 2-chloroadenosine in [3H]adenine-labeled guinea-pig cerebral cortical slices. Histamine causes a 3-fold augmentation. The first two agents have no effect on cyclic AMP alone, while histamine has only a small effect alone. The augmentation of the 2-chloroadenosine response appears to be mediated by alpha 1-adrenergic, 5HT2-serotonergic and H2-histaminergic receptors. VIP-elicited accumulations of cyclic AMP are also augmented through stimulation of alpha 1-adrenergic, 5HT2-serotonergic and H1-histaminergic receptors. Activation of these amine receptors also increases the turnover of phosphatidylinositols in [3H]inositol-labeled guinea pig cerebral cortical slices. Norepinephrine causes a 5-fold, serotonin a 1.2-fold, and histamine a 2.5-fold increase in accumulations of [3H]inositol phosphates. 2-Chloroadenosine, vasoactive intestinal peptide, baclofen, and somatostatin have no effect on phosphatidylinositol turnover, nor do the last two agents augment accumulations of cyclic AMP elicited by 2-chloroadenosine. The data suggest a possible relationship between turnover of phosphatidylinositol and the augmentations of the cyclic AMP accumulations elicited by biogenic amines in brain slices.  相似文献   

4.
Norepinephrine and serotonin augment by about 2-fold the accumulation of cyclic [3H]AMP elicited by 2-chloroadenosine in [3H]adenine-labeled guinea-pig cerebral cortical slices. Histamine causes a 3-fold augmentation. The first two agents have no effect on cyclic AMP alone, while histamine has only a small effect alone. The augmentation of the 2-chloroadenosine response appears to be mediated by α1-adrenergic, 5HT2-serotonergic and H2-histaminergic receptors. VIP-elicited accumulations of cyclic AMP are also augmented through stimulation of α1-adrenergic, 5HT2-serotonergic and H1-histaminergic receptors. Activation of these amine receptors also increases the turnover of phosphatidylinositols in [3H]inositol-labeled guinea pig cerebral cortical slices. Norepinephrine causes a 5-fold, serotonin a 1.2-fold, and histamine a 2.5-fold increase in accumulations of [3H]inositol phosphates. 2-Chloroadenosine, vasoactive intestinal peptide, baclofen, and somatostatin have no effect on phosphatidylinositol turnover, nor do the last two agents augment accumulations of cyclic AMP elicited by 2-chloroadenosine. The data suggest a possible relationship between turnover of phosphatidylinositol and the augmentations of the cyclic AMP accumulations elicited by biogenic amines in brain slices.  相似文献   

5.
Exposure of pig epidermis to adenylate cyclase stimulators results in receptor-specific desensitization. We investigated the nature of the agonist-induced desensitization, which was compared with the phorbol ester-induced, receptor-nonspecific desensitization. Both phorbol ester-induced desensitization and the agonist-induced desensitization were accompanied by an increase in forskolin- and cholera toxin-induced cyclic AMP accumulations. The magnitude of the increase in the agonist-induced desensitization was parallel to the degree of the initial cyclic AMP accumulation; histamine and adenosine, which increase more cyclic AMP than epinephrine, resulted in a more marked increase in forskolin- and cholera toxin-induced cyclic AMP accumulations. Similarly, epidermis desensitized to multiple receptors revealed more marked forskolin- and cholera toxin-induced cyclic AMP accumulations than epidermis desensitized to a single receptor. In contrast to the phorbol ester-induced desensitization, agonist-induced desensitization was not affected by the protein kinase C inhibitors H-7 and staurosporin. Further, agonist-induced desensitization was still inducible in phorbol ester-desensitized epidermis and vice versa. In contrast to the agonist-induced desensitization, which is accompanied by the preceding adenylate cyclase stimulation, no evidence for the stimulation of the adenylate cyclase during phorbol ester treatment was obtained. Neither agonist-induced desensitization nor phorbol ester-induced desensitization affected the content of inhibitory guanine nucleotide binding protein of the epidermis, which was monitored by the pertussis toxin (IAP)-catalyzed ADP ribosylation reaction. Our results indicate that agonist-induced desensitization and the phorbol ester-induced desensitization are independent of each other. Although both processes are characterized by increased forskolin- and toxin-induced cyclic AMP accumulations, the former is accompanied by initial cyclic AMP accumulation; the latter is not.  相似文献   

6.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

7.
Histamine receptors and cyclic AMP   总被引:1,自引:0,他引:1  
The identification and characterization of histamine receptors in the organ systems of various species has been made possible in recent years by the introduction of relatively selective agonists and antagonists of H1 and H2 receptors. H2 receptors have now been clearly demonstrated in gastric mucosa, heart, rat uterus, brain, and adipose tissue. Less well-defined H2 receptor systems have also been described in the vasculature, bronchioles, and other smooth muscles as well as in the thyroid gland and lymphocytes. In tissues where it has been examined a close correlation between H2 receptors and the adenylate cyclase--cyclic AMP system has been found. With the exception of the central nervous system stimulation of H1 receptors does not seem to be involved with cyclic AMP. In the case of the brain the H1 receptor stimulation of adenylate cyclase can be differentiated from H2 receptor stimulation of the enzyme by the use of blocking agents and by the fact that the H1 receptor response is enhanced in the presence of adenosine. Studies of the involvement of histamine with the adenylate cyclase--cyclic AMP system have been concentrated on such tissues as gastric mucosa, heart, rat uterus, brain, and adipose tissue. The present review will concentrate on the literature concerning those tissues.  相似文献   

8.
In guinea pig cerebral cortical slices labeled during a prior incubation with radioactive adenine, electrical stimulation or the presence of depolarizing agents such as veratridine, ouabain, and high concentrations of K+ elicit a marked accumulation of radioactive cyclic AMP. This accumulation is reduced in all cases by the presence of theophylline, a compound that antagonizes the stimulatory effects of adenosine on cyclic AMP accumulation in brain slices. Exogenous adenosine deaminase also reduced the accumulation of cyclic AMP elicited by electrical stimulation, veratridine, and high concentrations of K+. Thus, adenosine formed in neuronal compartments under depolarizing conditions appears to be released into the extracellular medium as a prerequisite to stimulation of the cyclic AMP-generating system. Adenosine deaminase does not prevent the reduction in levels of ATP under depolarizing conditions, nor does it antagonize the accumulation of cyclic AMP elicited by a combination and norepinephrine. Adenosine deaminase does not, however, prevent the accumulations of cyclic AMP elicited by the depolarizing agent, ouabain.  相似文献   

9.
We have used pheochromocytoma cells, clone PC12, as a model system for studying the effects of adenosine on neurosecretion. Exposure of the cells to adenosine or 2-chloroadenosine caused immediate activation of adenylate cyclase, increases in cellular cyclic AMP content, and inhibition of SAM-dependent phospholipid N-methylation and protein carboxymethylation. However, the effects on methylation were only observed with concentrations of adenosine 100 times greater than those that elevated cyclic AMP. Exposure of the cells to adenosine and 2-chloroadenosine did not alter the release of [3H]norepinephrine [(3H]NE) in the absence of depolarization. However, depolarization-dependent release of [3H]NE was markedly elevated by short (1-20 min) pretreatments with adenosine or 2-chloroadenosine. The enhancement of release was observed irrespective of the nature of the depolarizing stimulus (elevated K+, carbamylcholine, or veratridine). Release of [3H]acetylcholine in response to elevated K+ also was increased by adenosine pretreatment. These effects of adenosine and 2-chloroadenosine on neurotransmitter release closely paralleled elevation of cellular cyclic AMP but not inhibition of methylation. Taken together, the results show that adenosine, probably acting through adenosine receptors coupled to stimulation of adenylate cyclase, is able to modulate the neurosecretory process in PC12 cells. Furthermore, the enhancement of release occurred even though the extent of depolarization (measured as 86Rb+ flux through the acetylcholine receptor channel) and the amount of 45Ca2+ which entered upon depolarization were unchanged. Therefore, the enhancement of release produced by elevated cyclic AMP appeared to reflect increased efficiency of the stimulus-secretion coupling process.  相似文献   

10.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

11.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3':5'-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly within 1 min and was maximal by 10 to 20 min with approx. 2 and 10 muM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C]adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

12.
The diterpene forskolin markedly activates adenylate cyclase in membranes from various rat brain regions and elicits marked accumulations of radioactive cyclic AMP in adenine-labeled slices from cerebral cortex, cerebellum, hippocampus, striatum, superior colliculi, hypothalamus, thalamus, and medulla-pons. In cerebral cortical slices, forskolin has half-maximal effects at 20-30 microM on cyclic AMP levels, both alone and in the presence of the phosphodiesterase inhibitor ZK 62771. The presence of a very low dose of forskolin (1 microM) can augment the response of brain cyclic AMP-generating systems to norepinephrine, isoproterenol, histamine, serotonin, dopamine, adenosine, prostaglandin E2, and vasoactive intestinal peptide. Forskolin does not augment responses to combinations of histamine-norepinephrine adenosine-norepinephrine, or histamine-adenosine. For norepinephrine and isoproterenol in rat cerebral cortical slices and for histamine in guinea pig cerebral cortical slices, the presence of 1 microM-forskolin augments the apparent efficacy of the amine, whereas for adenosine, prostaglandin E2, and vasoactive intestinal peptide, the major effect of 1 microM-forskolin is to increase the apparent potency of the stimulatory agent. In rat striatal slices, forskolin reveals a significant response of cyclic AMP systems to dopamine and augments the dopamine-elicited activation of adenylate cyclase in rat striatal membranes. The activation of cyclic AMP systems by forskolin is rapid and reversible, and appears to involve both direct activation of adenylate cyclase and facilitation and/or enhancement of receptor-mediated activation of the enzyme.  相似文献   

13.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

14.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

15.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

16.
Rat fat cells incubated with lipolytic agents released substances to the medium which acted as feedback regulators of cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The feedback regulators were not removed by adenosine deaminase. Dialyzed medium that had previously been incubated with fat cells in the presence of norepinephrine markedly inhibited cyclic AMP accumulation by fresh cells, whereas dialyzed medium from control cells did not inhibit cyclic AMP accumulation. The effects of lipolytic agents could be mimicked by adding dialyzed medium previously incubated with fat cells in the presence of oleic acid. This suggested that free fatty acids were the nondialyzable and adenosine deaminase-insensitive inhibitors of cyclic AMP accumulation released to the medium by fat cells incubated with lipolytic agents. The regulatory function of free fatty acids was related to the molar ratio of fatty acid to albumin. Profound inhibition of both lipolysis and cyclic AMP accumulation was seen as the free fatty acid/albumin ratio exceeded 3. The inhibition of cyclic AMP accumulation by oleate was seen as soon as there was a detectable increase in cyclic AMP due to lipolytic agents. Protein kinase activity (in the presence of cyclic AMP) of the infranatant obtained after centrifugation of fat cell homogenates at 48,000 x g was inhibited by medium from cells incubated with lipolytic agents or added oleate. Adenylate cyclase activity of rat fat cell ghosts was also inhibited by dialyzed or nondialyzed medium that previously had been incubated with lipolytic agents or added fatty acids. The direct addition of oleate markedly inhibited adenylate cyclase activity as the free fatty acid/albumin ratio exceeded 2. These data suggest that the prolonged drop in cyclic AMP accumulation seen during the incubation of rat fat cells with lipolytic agents is due to the inhibition of adenylate cyclase. This occurs when the free fatty acid/albumin ratio exceeds 3.  相似文献   

17.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

19.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

20.
Histamine activated adenylate cyclase in pig skin (epidermal) slices, resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of cyclic AMP-phosphodiesterase inhibitors (theophylline, papaverine). A specific H2 receptor inhibitor (metiamide) inhibited the effect of histamine completely, while other antihistamines (diphenhydramine, acetophenazine, perphenazine, fluphenazine, promethazine) inhibited the effect of histamine to various lesser degrees. It has been shown that both epinephrine and prostaglandin E stimulate epidermal adenylate cyclase. Our data using specific blocking agents indicate that histamine, epinephrine and prostaglandin E2 act independently on the epidermal adenylate cyclase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号