首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Schäfer G  Smith EM  Patterton HG 《Biochemistry》2005,44(50):16766-16775
Saccharomyces cerevisiae encodes a single linker histone, Hho1p, with two globular domains. This raised the possibility that Hho1p could bind to two nucleosome cores simultaneously. To evaluate this idea, we studied the ability of a four-way junction, immobilized on the surface of a magnetic bead, to pull down a radiolabeled four-way junction in the presence of different Hho1 proteins. Four-way junctions are known to bind to H1, presumably due to structure similarities to the DNA at the nucleosomal entry/exit point. We found a significant increase in the ability of full-length Hho1p to pull down radiolabeled four-way junction DNA under ionic conditions where both globular domains could bind. The binding was structure specific, since the use of double-stranded DNA, or a mutant Hho1p in which the second DNA binding site of globular domain 1 was abolished, resulted in a significant decrease in bridged binding. Additionally, bridged binding required a covalent attachment between the two globular domains, since factor Xa protease treatment of the complex formed by a modified Hho1p that contained a factor Xa cleavage site between the two globular domains resulted in a significant release of radiolabeled four-way junction. These findings demonstrated that the two globular domains independently associated with two different four-way junction molecules in a manner that required amino acid residues implicated in structure-specific binding in the nucleosome. We discuss the implication of these findings on the chromatin structure of yeast and propose a model where a single Hho1 protein binds to two serially adjacent nucleosomes.  相似文献   

7.
8.
9.
10.
Qiu Y  Zhang W  Zhao C  Wang Y  Wang W  Zhang J  Zhang Z  Li G  Shi Y  Tu X  Wu J 《The Biochemical journal》2012,442(3):527-538
Methylation of H4K20 (Lys(20) of histone H4) plays an important role in the regulation of diverse cellular processes. In fission yeast, all three states of H4K20 methylation are catalysed by Set9. Pdp1 is a PWWP (proline-tryptophan-tryptophan-proline) domain-containing protein, which associates with Set9 to regulate its chromatin localization and methyltransferase activity towards H4K20. The structure of the Pdp1 PWWP domain, which is the first PWWP domain identified which binds to methyl-lysine at the H4K20 site, was determined in the present study by solution NMR. The Pdp1 PWWP domain adopts a classical PWWP fold, with a five-strand antiparallel β-barrel followed by three α-helices. However, it differs significantly from other PWWP domains in some structural aspects that account, in part, for its molecular recognition. Moreover, we revealed a unique binding pattern of the PWWP domain, in that the PWWP domain of Pdp1 bound not only to H4K20me3 (trimethylated Lys(20) of histone H4), but also to dsDNA (double-stranded DNA) via an aromatic cage and a positively charged area respectively. EMSAs (electrophoretic mobility-shift assays) illustrated the ability of the Pdp1 PWWP domain to bind to the nucleosome core particle, and further mutagenesis experiments indicated the crucial role of this binding activity in histone H4K20 di- and tri-methylation in yeast cells. The present study may shed light on a novel mechanism of histone methylation regulation by the PWWP domain.  相似文献   

11.
12.
13.
14.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

15.
The yeast Spt10p activator is a putative histone acetyltransferase (HAT) possessing a sequence-specific DNA-binding domain (DBD) which binds to the upstream activation sequences (UAS elements) in the histone gene promoters. Spt10p binds to a pair of histone UAS elements with extreme positive cooperativity. The molecular basis of this cooperativity was addressed. Spt10p (640 residues) is an elongated dimer, but the isolated DBD (residues 283–396) is a monomer and binds non-cooperatively to DNA. A Spt10p fragment comprising the N-terminal domain (NTD), HAT domain and DBD (residues 1–396) binds cooperatively and is a dimer, whereas an overlapping Spt10p fragment comprising the DBD and C-terminal domains (residues 283–640) binds non-cooperatively and is a monomer. These observations imply that cooperative binding requires dimerization. The isolated NTD (residues 1–98) is a dimer and is responsible for dimerization. We propose that cooperativity involves a conformational change in the Spt10p dimer which facilitates the simultaneous recognition of two UAS elements. In vivo, deletion of the NTD results in poor growth, but does not prevent the binding at the HTA1 promoter, suggesting that dimerization is biologically important. Residues 1–396 are sufficient for normal growth, indicating that the critical functions of Spt10p reside in the N-terminal domains.  相似文献   

16.
17.
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.  相似文献   

18.
The Gal4p family of yeast zinc cluster proteins comprises regulators of multidrug resistance genes. For example, Pdr1p and Pdr3p bind as homo- or heterodimers to pleiotropic drug response elements (PDREs) found in promoters of target genes. Other zinc cluster activators of multidrug resistance genes include Stb5p and Yrr1p. To better understand the interplay among these activators, we have performed native co-immunoprecipitation experiments using strains expressing tagged zinc cluster proteins from their natural chromosomal locations. Interestingly, Stb5p is found predominantly as a Pdr1p heterodimer and shows little homodimerization. No interactions of Stb5p with Pdr3p or Yrr1p could be detected in our assays. In contrast to Stb5p, Yrr1p is only detected as a homodimer. Similar results were obtained using glutathione S-transferase pull-down assays. Importantly, the purified DNA binding domains of Stb5p and Pdr1p bound to a PDRE as heterodimers in vitro. These results suggest that the DNA binding domains of Pdr1p and Stb5p are sufficient for heterodimerization. Our data demonstrate a complex interplay among these activators and suggest that Pdr1p is a master drug regulator involved in recruiting other zinc cluster proteins to fine tune the regulation of multidrug resistance genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号