首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial metabolism of steviol and steviol-16alpha,17-epoxide   总被引:1,自引:0,他引:1  
Yang LM  Hsu FL  Chang SF  Cheng JT  Hsu JY  Hsu CY  Liu PC  Lin SJ 《Phytochemistry》2007,68(4):562-570
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.  相似文献   

2.
M Numazawa  A Mutsumi  M Ogata  Y Osawa 《Steroids》1987,49(4-5):247-257
3 beta,16 alpha,19-Trihydroxy-5-androsten-17-one and 16 alpha,17-dihydroxy-4-androstene-3,17-dione were synthesized from the 5 alpha-bromo-6 beta,19-epoxy-17-ketone derivative 1, using the bromination at C-16 alpha of the 17-ketone 1 and the controlled alkaline hydrolysis of the 16 alpha-bromo-17-ketones 2 and 11 as key reactions. Zinc dust reductive cleavage of the 6 beta,19-epoxy-16 alpha-hydroxy-17-ketones 4 and 12, produced by controlled hydrolysis, gave the corresponding 19-alcohol derivatives 6 and 14, which were rearranged to the 17 beta-hydroxy-16-ketones 7 and 15 when treated with sodium hydroxide. The 3 beta,16 alpha,17 beta,19-tetrol 8 was obtained from the 16 alpha-ketol 6 by reaction with sodium borohydride.  相似文献   

3.
The syntheses of the 7beta-hydroxy metabolite of ORG OD14 (Livial), (3alpha,7beta, 17alpha)-7-methyl-19-norpregn-5(10)-en-20-yne-3,7,17-t riol (35), and its 7-epimer, (3alpha,7alpha, 17alpha)-7-methyl-19-norpregn-5(10)-en-20-yne-3,7,17-t riol (11), are described.  相似文献   

4.
The syntheses of the 7beta-hydroxy metabolite of ORG OD14 (Livial((R))), (3alpha,7beta,17alpha)-7-methyl-19-norpregn-5(10)-en-20-yne-3,7,17-triol (35), and its 7-epimer, (3alpha,7alpha,17alpha)-7-methyl-19-norpregn-5(10)-en-20-yne-3,7,17-triol (11), are described.  相似文献   

5.
3 beta,16 beta,19-Trihydroxyandrost-5-en-17-one (12) was synthesized from 5 alpha-bromo-3 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (2) through acetoxylation at C-16 beta of the enol acetate 4 with lead tetraacetate and reductive cleavage of the epoxide ring with zinc dust yielding the 3 beta,16 beta-diacetoxy-19-hydroxy steroid 11, followed by hydrolysis of the acetoxy groups with sulfuric acid. Jones oxidation of compound 11 followed by the acid hydrolysis gave the 19-oxo steroid 15. 5 alpha-Bromo-3 beta-hydroxy-16 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (8), obtained by selective hydrolysis of the 3-formate 5 with ammonium hydroxide, was oxidized with Jones reagent to afford the 3-oxo steroid 16, which was converted into the 19-hydroxy derivative 17 by treatment with zinc dust. 16 beta,19-Dihydroxyandrost-4-ene-3,17-dione (18) and its 19-oxo derivative 21 were obtained from compound 17 through a similar reaction sequence.  相似文献   

6.
The 3 beta, 5 alpha-, 3 alpha, 5 alpha- and 3 alpha, 5 beta-tetrahydro derivatives 19, 20 and 27 of 19-noraldosterone (1) were prepared to facilitate the search for these compounds in urine. The diketal 4, consisting of a 2:1 mixture of the 5,6- and 5(10)-ene isomers, was hydrogenated with Pd-C and partially hydrolyzed to 5 alpha, 10 alpha- and 5 alpha, 10 beta-dihydroketals 8 and 10 in a 1:2.5 ratio. Assignment of protons was done with aid of COSY 45 experiments. Compound 10 was reduced with diisobutylaluminum hydride (DIBAH) to 4 products: the 3 alpha- and 3 beta-ol hemiacetals 16 and 15, and the corresponding tetraols 14 and 13. Alternatively, hydrogenation of the 4-en-3-one 2 gave 10, its 5 beta, 10 beta-isomer 21 and the tetrahydro compound 22, in a 4:2:1 ratio. A better way to prepare the 5 beta, 10 beta-series involved microbial conversion of 2 with Clostridium paraputrificum, and the resulting tetrahydrolactone 23 was reduced with DIBAH to the hemiacetal 24. Acid hydrolysis of 16, 15 and 24 afforded 20, 19 and 27, respectively. According to [1H]-NMR, in solution 20 and 24 exist as mixtures of isomers, while 19 appears in one form only. Periodate oxidation converted 19 and 27 into their gamma-etiolactones 18 and 28. EI MS base peaks are different and characteristic for 19, 20 and 27.  相似文献   

7.
(19R)-and (19S)-tert-Butyldimethylsilyl (TBS) ethers of 19-hydroxy-19-vinyl-16α,17α-cyclohexanopregn-5-en-20-ones were synthesized. These compounds containing the 1,5-oxydienoic motif were subjectedto the anionic oxy-Cope rearrangement to obtain 3β-TBS ether of 6β-(3-oxopropyl)-16α,17α-cyclohexano-19-norpregn-5(10)-en-20-one. The structures of the compounds synthesized were confirmed by the analysis of their 1H and 13C NMR spectra.  相似文献   

8.
Testosterone metabolism by isolated rat Sertoli cells cultured in vitro was investigated using HPLC and GC-MS techniques. Monolayer cultures of Sertoli cells (greater than 90% pure and free of Leydig cells) were incubated for 3-day periods with a stable labeled [2,2,4,6,6-d5]testosterone prepared and used in a 1:1 proportion with unlabeled testosterone as the substrate (5 X 10(-7)M). After incubation, the metabolites were extracted from the media and reacted with oestradiol-antibodies. The antibody-bound components were separated on reverse phase HPLC and the fraction corresponding to oestradiol was analyzed by GC-MS in the form of TMS-ether. One of the metabolites whose mass spectrum contained d0 + d5 species was detected and interpreted to be a triol with a mol. wt of 308. Mass spectra data indicated that this testosterone metabolite is one of the sixteen possible isomers of 3,16,17-trihydroxy androstane. This substance was identified based on the Vm value (27.81) closely resembling that of 5 alpha-androstane-3 alpha,16 alpha,17 beta-triol TMS-ether (Vm reported = 27.78) [1] and when compared directly with synthesized compounds [2-3]. Recently we have demonstrated that similar Sertoli cell preparations contain two 16 alpha-hydroxylases by their ability to convert oestradiol to oestriol [4] and 5 alpha-androstane-3 alpha,17 beta-diol to 5 alpha-androstane-3 alpha,16 alpha,17 beta-triol [3], where the former conversion is not affected by FSH, the latter is significantly stimulated by the presence of FSH. Presence of this new product represents the first example of testosterone conversion to 5 alpha-androstane-3 alpha,16 alpha,17 beta-triol and confirms our previous observation that 16 alpha-hydroxylation of 5 alpha-reduced androgens can occur in the rat testis.  相似文献   

9.
Park KK  Ko DH  You Z  Khan MO  Lee HJ 《Steroids》2006,71(3):183-188
A series of new anti-inflammatory steroidal antedrugs with C-16,17-isoxazoline ring system were synthesized and their pharmacological activities were evaluated. We reported earlier that these compounds are promising antedrugs based on the results of 5-day rat croton oil ear edema assay. In the present study, most of these compounds showed high binding affinities to the glucocorticoid receptor of liver cytosol. 21-acetyloxy-9alpha-fluoro-11beta-hydroxy-3,20-dioxo-1,4-pregnadieno [16alpha,17alpha-d] isoxazoline (FP-ISO-21AC) and 11beta,21-dihydroxy-9alpha-fluoro-3,20-dioxo-1,4-pregnadieno [16alpha,17alpha-d] isoxazoline (FP-ISO-21OH) were found 5.0-, 5.3-fold more potent than prednisolone, respectively. Inhibitory effects of the antedrugs on the nitric oxide (NO) production were assessed using LPS-stimulated RAW 264.7 murine macrophage cells. All these steroidal antedrugs exhibited concentration-dependent inhibition of NO production, but their relative potencies were lower than prednisolone. In vitro metabolism study in rat plasma showed that FP-ISO-21AC and 21-acetyloxy-9alpha-fluoro-11beta-hydroxy-3,20-dioxo-1,4-pregnadieno [16alpha,17alpha-d]-3'-hydroxyiminoformyl isoxazoline (FP-OXIM-21AC) were hydrolyzed rapidly, with the half-lives of 2.1 and 4.2 min, respectively. The half-lives of FP-ISO-21OH and 11beta,21-dihydroxy-9alpha-fluoro-3,20-dioxo-1,4-pregnadieno [16alpha,17alpha-d]-3'-hydroxyiminoformyl isoxazoline (FP-OXIM-21OH) were 92.2 and 110.2 min, respectively.  相似文献   

10.
X Jiang  J Wang  J Hu  Z Ge  Y Hu  H Hu  D F Covey 《Steroids》2001,66(8):655-662
Two groups of N-acylated D-azasteroids (4 and 5) were synthesized to explore structure-activity relationships for steroid modulation of GABA(A) receptor function. The target compounds were prepared conveniently from (5alpha)-3-hydroxyandrostan-17-ones (6 and 7) via the intermediate (5alpha)-17-aza-D-homoandrostan-3-ols (14 and 15) or (5alpha)-17-azaandrostan-3-ols (18 and 19) precursors in high overall yields. A Beckmann rearrangement and a Hofmann rearrangement were employed as two key steps in the synthetic sequences.  相似文献   

11.
In our efforts to develop compounds with therapeutic potential as antiandrogens, we synthesized a series of 5alpha-androstane-3alpha,17beta-diol derivatives with a fixed side-chain length of 3-methylenes at C-16alpha, but bearing a diversity of functional groups at the end. Among these, the chloride induced the best antiproliferative activity on androgen-sensitive Shionogi cells. Substituting the OH at C-3 by a methoxy group showed the importance of the OH. Moreover, its transformation into a ketone increased the androgen receptor (AR) binding but decreased the antiproliferative activity and induced a proliferative effect on Shionogi cells. These results confirm the importance of keeping a 5alpha-androstane-3alpha,17beta-diol nucleus instead of a dihydrotestosterone nucleus. Variable side-chain lengths of 2-, 3-, 4-, and 6-methylenes at C-16alpha were investigated and the optimal length was found to be 3-methylenes. Although exhibiting a weak AR binding affinity, 16alpha-(3'-chloropropyl)-5alpha-androstane-3alpha,17beta-diol (15) provided an antiproliferative activity on Shionogi cells similar to that of pure non-steroidal antiandrogen hydroxy-flutamide (77% and 67%, respectively, at 0.1 microM). The new steroidal compound, 15, thus constitutes a good starting point for development of future antiandrogens with a therapeutic potential against prostate cancer.  相似文献   

12.
13.
Steroidal epoxy and/or N-oxy 17-picolyl and 17-picolinylidene-androst-5-ene derivatives have been prepared using 3beta,17beta-dihydroxy-17alpha-picolyl-androst-5-ene (1), 3beta-acetoxy-17-picolinylidene-androst-5-ene (2), and 3beta-hydroxy-17-picolinylidene-androst-5-ene (3) as synthetic precursors. The compounds 2 and/or 3 were reacted with m-chloroperoxybenzoic acid (MCPBA). The compounds synthesized from 2 were 17-picolinylidene-N-oxide 4, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 5 and 6, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 7 and 8. Starting from compound 3, a mixture of 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene 9 and 10, 5alpha,6alpha-epoxy and 5beta,6beta-epoxy-17-picolinylidene-N-oxide 11 and 12, and 5alpha,6alpha:17alpha,20alpha- and 5beta,6beta:17alpha,20alpha-diepoxy-N-oxide 13 and 14 were obtained. From compounds 15 and 18, obtained from 1 and 3 by the Oppenauer oxidation, the 4alpha,5alpha-epoxy and 4beta,5beta-epoxy derivatives 16, 17 and 20, 21 were prepared by oxidation with 30% H(2)O(2). Oxidation of 18 with MCPBA yielded only the N-oxide 19. The structures of compounds 15 and 18 were proved by the X-ray analysis. Compounds 1-6, 9, 15, 17, 18, and 21 were tested on activity against the enzyme aromatase. Antitumor activity against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER-, MDA-MB-231, and prostate cancer PC3) was evaluated. Three tested compounds (1, 4, and 19) showed strong activity against PC3, the IC(50) values being in the range 0.55-10microM, whereas compound 17 showed strong activity against MDA-MB-231 (IC(50) 10.4microM).  相似文献   

14.
The epididymis of adult rats metabolizes 3H 5alpha-androstane-3alpah,17beta-diol (3alpha-diol) by experiments in vitro. After incubation of tissue slices at 37 degrees C for 2 hours, 2% of the radioactivity was found in the water-soluble fraction whereas 98% was found to be ether soluble (free steroids). Further investigation of the free steroids showed the following to be present: 3alpha-diol 39.9%, DHT (17beta-hydroxy-5alpha-androstan-3-one) 33.7%, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) 9.2%, 3beta-diol (5alpha-androstane-3beta,17beta-diol) 2.6%, 5alpha-A-dione (5alpha-androstan-3,17-dione) 1.1%, delta 16-3alpha-ol (5alpha-androst-16-en-3alpha-ol) 1.0%, delta16-3beta-ol (5alpha-androst-16-en-3beta-ol) 2.6%, delta 16-3-one (5alpha-androst-16-en-3-one) 2.9%, and polar compounds 3.3%. When segments of the epididymis (caput and cauda) were incubated in the same way, qualitatively similar metabolites were formed but a greater amount of 3alpha-diol was metabolized by the cauda epididymis. This increase was mainly accounted for by an increased formation of delta 16 compounds (14.3% in cauda, 4.3% in caput). This is most probably due to the presence of larger numbers of mature spermatozoa, which, as we have previously shown, form delta16 steroids from 3alpha-diol and DHT (5).  相似文献   

15.
Two isomeric dimeric steroids, 3,3'-bis(methyl 3-hydroxyandrost-4-en-17-on-19-oate-3-yl), with symmetrical (alpha, alpha') and unsymmetrical structures (alpha,beta'), have been obtained by reduction of methyl androst-4-ene-3,17-dion-19-oate with zinc in aqueous acetic acid together with the major products, the isomeric methyl 5alpha- and 5beta-androst-3-en-17-on-19-oates. The structures of the dimers and unsaturated products are supported by spectroscopic methods. The symmetrical dimer was also obtained from treatment of the 4-en-3-on-19-oate ester with lithium in ammonia.  相似文献   

16.
Progesterone biotransformation with recombinant yeast Yarrowia lipolytica E129A15 and Saccharomyces cerevisiae GRF18/YEp5117 alpha expressing bovine adrenocortical cytochrome P45017 alpha yielded 17 alpha-hydroxyprogesterone and two diols, 17 alpha, 20 beta- and 17 alpha, 20 alpha-dihydroxypregn-4-en-3-one. The oxidation of mixtures of the three steroids with chromic acid resulted in the cleavage of 17-20 bonds in the diols with the formation of androst-4-ene-3,17-dione. The biotransformation of pregn-4-ene-20 beta-ol-3-one by means of Y. lipolytica E129A15 was accompanied by the following reactions: the primary oxidation of these compounds to progesterone and the subsequent successive reactions of 17 alpha-hydroxylation and 20 alpha- and 20 beta-reduction. The results widen the possibilities for enzymatic and chemical modifications of steroids. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

17.
A new compound, 17 beta-(cyclopropylamino)-androst-5-en-3 beta-ol, MDL 27,302, has been designed and synthesized as a mechanism-based inhibitor of cytochrome P450(17 alpha). The time-dependent inactivation of human testicular P450(17 alpha) is irreversible by dialysis and requires the cofactor, NADPH; Kiapp. 90 nM (determined on cynomolgous monkey testis enzyme). Inactivation was not affected by the nucleophile DTT, suggesting retention of the inhibitor in the enzyme active site during the inactivation process. Inhibition is specific to the cyclopropylamino compound, since the isopropylamino- and cyclobutylamino-analogs were not inhibitory. Enzymatic specificity of MDL 27,302 for P450(17 alpha) was demonstrated by its failure to inhibit steroid 21-hydroxylase and the cholesterol side chain cleavage enzyme (P450scc). Both the 17 alpha-hydroxylase and C17-20 lyase activities of cytochrome P450(17 alpha) of human testis microsomes were inhibited by MDL 27,302.  相似文献   

18.
Bioassay-guided fractionation of the antimalarial-active CHCl3 extract of the dried stem of Nauclea orientalis (L.) L. (Rubiaceae) has resulted in the isolation of two novel tetrahydro-beta-carboline monoterpene alkaloid glucosides, naucleaorine (= (16alpha,17beta)-3,14:15,20-tetradehydro-16-ethenyl-17-(beta-D-glucopyranosyloxy)-19alpha-methoxyoxayohimban-21-one; 1) and epimethoxynaucleaorine (2), as well as the known compounds, strictosidine lactam (= (15beta,16alpha,17beta)-19,20-didehydro-16-ethenyl-17-(beta-D-glucopyranosyloxy)oxayohimban-21-one; 3), 3,4,5-trimethoxyphenol (4), 3alpha-hydroxyurs-12-en-28-oic acid methyl ester (5), 3alpha,23-dihydroxyurs-12-en-28-oic acid (6), 3alpha,19alpha,23-trihydroxyurs-12-en-28-oic acid methyl ester (7), and oleanolic acid (8). Compounds 1, 2, 6, and 8 showed moderate in vitro activities against Plasmodium falciparum. Their structures and configurations were elucidated by spectroscopic methods including 1D- and 2D-NMR analyses.  相似文献   

19.
D-Homo derivatives in the androstane and estrane series, 12-19, were synthesized by a fragmentation-cyclization reaction of 16-oximino-17-hydroxy-17-substituted derivatives 3-9, or by cyclization of the corresponding D-seco derivatives 20-26. The structures were confirmed by X-ray analysis of compounds 12 and 16. Preliminary assessment of inhibitory effects of D-homo derivatives from androstane series towards aromatase, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), 17 alpha-hydroxylase/C17-20 lyase (P450c17) and 17 beta-HSD indicated much lower inhibitory potential compared to previously tested activity of another type of D-modified steroids, namely D-seco derivatives. Also, assessment of potential antiestrogenic activity of derivatives from estrane series showed absence of such an activity.  相似文献   

20.
The C16-double bond of the biolefinic steroid, androsta-5,16-dien-3 beta-ol (delta 16-ANDO), was regioselectively oxidized by male rat liver microsomes in the presence of NADPH and EDTA to 16 alpha, 17 alpha-epoxyandrost-5-en-3 beta-ol (delta 16-ANDO 16,17 alpha-epoxide), 16 beta,-17 beta-epoxyandrost-5-en-3 beta-ol (delta 16-ANDO 16,17 beta-epoxide), androst-5-ene-3 beta, 16 alpha, 17 beta-triol (delta 16-ANDO 16 alpha, 17 beta-glycol), and androst-5-ene-3 beta, 16 beta, 17 alpha-triol (delta 16-ANDO 16 beta, 17 alpha-glycol). The microsomes hydrolyzed delta 16-ANDO 16,17 alpha-epoxide specifically to the 16 beta, 17 alpha-glycol and delta 16-ANDO 16,17 beta-epoxide to the 16 beta, 17 alpha-glycol and the 16 alpha, 17 beta-glycol in an equal ratio. delta 16-ANDO 16,17 alpha-epoxide was much more susceptible to microsomal hydrolysis than the 16,17 beta-epoxide. The xenobiotic epoxide hydrolase inhibitor, 3,3,3-trichloropropene 1,2-oxide, potently inhibited microsomal hydrolysis of delta 16-ANDO 16,17-epoxides as well as of benzo[a]pyrene 4,5-epoxide and styrene 7,8-epoxide. Addition of 3,3,3-trichloropropene 1,2-oxide accumulated the 16,17-epoxides formed from delta 16-ANDO in the reaction medium with concomitant decrease in the amounts of the 16,17-glycols formed, leading to a conclusion that the 16,17-epoxides played a role as obligatory intermediates in the microsomal delta 16-oxidation of delta 16-ANDO to the 16,17-glycols. Epoxidation of delta 16-ANDO was stereoselectively mediated by a cytochrome P-450 with quite unique properties to form the 16,17 alpha-epoxide as the major oxidation product and the 16,17 beta-epoxide as the minor. The epoxidation was strongly inhibited with CO, activated with 2-diethylaminoethyl 2,2-diphenylvalerate hydrochloride more than twice as much, and little affected with metyrapone and 7,8-benzoflavone. A pretreatment of the animals with 3-methylcholanthrene induced the delta 16-ANDO-epoxidizing activity of their microsomes 1.5 times higher than those from the control animals. However, a pretreatment with phenobarbital reduced the enzyme activity to one-half of the control microsomes. Under the same conditions, microsomal activities of hydroxylation of benzo[a]pyrene and N-demethylation of benzphetamine were significantly induced by the pretreatments with 3-methylcholanthrene and phenobarbital, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号