首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1991,31(12):1417-1427
Stopped flow CD (SFCD) kinetic studies of self-assembly of coiled coils of rabbit alpha alpha-tropomyosin and of nonpolymerizable alpha alpha-tropomyosin (NPTm) are reported. The protein was denatured in 6 M urea buffer, then renatured by 10-fold dilution into benign saline buffer. Folding was monitored by SFCD in the backbone region (222 nm). Protein chains are shown to be totally unfolded (and separated in the reduced species) in the initial denaturing medium and fully folded as two-chain coiled coils in the final benign medium. In all cases of folding in benign buffer of totally unfolded chains, two phases were found in the folding process: a fast phase (less than 0.04 s, the SFCD dead time), in which an intermediate state with about 70% of the equilibrium ellipticity forms; followed by a slower, observable phase that completes the folding. The slow phase is first order (k-1 = 1.6 s at 20 degrees C), signifying that chain association for reduced samples occurs in the fast phase. In contrast, folding in benign buffer from an initial state with 70% of the equilibrium ellipticity is all fast, suggesting that the folding intermediate is not an equilibrium species. Cross-linking at Cys-190 increases the helix content of the fast-formed intermediate state to about 85% of the equilibrium value, but leaves the rate constant of the slow phase unchanged. In NPTm, which does not form high aggregates at low ionic strength, the rate of the observable phase is almost independent of ionic strength in the range of approximately 0.15-0.6 M, but is reduced one to two orders of magnitude by further reduction to 0.026 M. In folding from totally unfolded chains, the rate is reduced less than one order of magnitude by changing the final state to about 50% folded. In contrast to folding, unfolding of alpha alpha-tropomyosin from the native state is all fast.  相似文献   

2.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1992,32(7):751-756
The kinetics of folding random coils of alpha alpha-tropomyson (Tm) subsequences to two-chain coiled coils was studied by stopped-flow CD. Subsequences studied were those comprising residues 11-127 (11Tm127), 142-281 (142Tm281), 1-189 (1Tm189), and 190-284 (190Tm284) of the parent 284-residue alpha-tropomyosin chain. Unlike the parent, subsequences 1Tm189 and 11Tm127 fold within the dead time of the instrument (less than 0.04 s). Like the parent, subsequences 142Tm281 and 190Tm284 fold in two phases. In the fast phase, 45% and 32%, respectively, of the equilibrium helical content form. In the time-resolvable, first-order slow phase (k-1 = 2.7 s at 20 degrees C for 142Tm281 and k-1 = 2.0 s at 15 degrees C for 190Tm284), the remaining structure forms. Neither reduced 142Tm281 nor 190Tm284 show any dependence of the rate on concentration, so chain association occurs in the fast phase. Like the parent 142Tm281 forms more helical content in the fast phase when cross-linked at C-190, and the remaining structure forms slowly with rate parameters similar to those of the reduced species. Comparison of the folding behavior of C- and N-terminal subsequences with that of the parent protein suggests that the slow phase in the parent is caused by a folding bottleneck somewhere nearer the C-terminus. However, rapid association and partial folding near the N-terminus is not necessary for prompt folding, since even 190Tm284 chains associate and partially fold very rapidly (less than 0.04 s), and then complete the folding in seconds.  相似文献   

3.
M E Holtzer  K Askins  A Holtzer 《Biochemistry》1986,25(7):1688-1692
Equilibrium thermal denaturation curves (by circular dichroism) are reported for doubly cross-linked beta beta tropomyosin two-chain coiled coils. Cross-linking was performed by reaction of sulfhydryls with either ferricyanide or 5,5'-dithiobis(2-nitrobenzoate) (NbS2). The extent of reaction was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and either by titration of residual sulfhydryls with NbS2 (ferricyanide cross-linking) or by determination of mixed disulfide (protein-S-SbN) through reaction with dithiothreitol (NbS2 cross-linking). The results indicate approximately 90% conversion to molecules with interchain cross-links at both C-36 and C-190. Thermal unfolding curves are compared with those obtained previously for non-cross-linked species. The curves are indistinguishable up to approximately 40 degrees C. Above approximately 40 degrees C, the doubly cross-linked species is more stable, but the transition is less steep. This relationship is also compared with that found between alpha alpha tropomyosin (a similar coiled coil made of a genetic variant chain having a sulfhydryl only at C-190) and its singly cross-linked derivative. Thermal curves for alpha alpha and beta beta non-cross-linked species are very similar, alpha alpha being somewhat more stable. For cross-linked alpha alpha, however, the curve sags at temperatures somewhat below the region of principal cooperative loss of helix, the latter occurring at higher temperature but with the same steepness as in the non-cross-linked case. The sag has been ascribed to a "pretransition" in the region of C-190. Thus, doubly and singly cross-linked species differ in that the former show no pretransition and decreased steepness in the principal transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The reversible thermally induced unfolding of various forms of tropomyosin, a two-chain alpha-helical coiled coil, has been studied by high-sensitivity differential scanning calorimetry (DSC). Included in the study are the reduced and oxidized (disulfide cross-linked) forms of alpha alpha- and beta beta-tropomyosin, and the forms of alpha alpha-tropomyosin in which all sulfhydryl groups have been blocked by carboxymethylation or carboxyamidomethylation. Oxidation or blocking of the sulfhydryl groups of tropomyosin strongly affect the thermotropic behavior of the protein in unpredictable ways. The empirical results presented here are in qualitative agreement with those from an earlier DSC study of the oxidized and carboxymethylated forms of alpha alpha-tropomyosin [S.A. Potekhin and P.L. Privalov (1982) Journal of Molecular Biology, Vol. 159, pp. 519-535], but we find that a different decomposition into subtransitions is possible. Comparison of the alpha alpha and beta beta species indicates, in agreement with extant CD studies, that the noncross-linked beta beta species is somewhat less stable than its alpha alpha counterpart, but that cross-linking enhances the stability of the beta beta doubly cross-linked species by a greater amount and does not lead to the small low-temperature transition ("pretransition") seen in the singly cross-linked alpha alpha species.  相似文献   

5.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

6.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   

7.
M E Holtzer  W C Bracken  A Holtzer 《Biopolymers》1990,29(6-7):1045-1056
Current ideas on unfolding equilibria in two-chain, coiled-coil proteins are examined by studies of a species of beta beta tropomyosin that is sulfhydryl blocked at C190 and disulfide cross-linked at C36 (.beta-beta.). The desired species is produced by a seven-step process: (1) Rabbit skeletal muscle, comprising predominantly alpha alpha and alpha beta species, is oxidized with ferricyanide, cross-linking both species at C190. (2) The product is carbamylated at C36 of beta chains, using cyanate in denaturing medium at pH 6. (3) All C190 cross-links are reduced with dithiothreitol (DTT). (4) All C190 sulfhydryls are permanently blocked by carboxyamidomethylation. (5) Chromatography on carboxymethylcellulose in denaturing medium is used to separate C190-blocked alpha chains from C190-blocked, C36-carbamylated beta chains. (6) The latter are decarbamylated in denaturing medium by raising the pH to 8.0. (7) The C190-blocked beta chains are renatured and cross-linked at C36 by ferricyanide. The procedure and the quality of the final product are judged by NaDodSO4/polyacrylamide gel electrophoresis, titration of free sulfhydryls, and electrophoretic analysis of trypsin digestion products. Thermal unfolding curves are reported for the resulting pure .beta-beta. species and for its DTT-reduction product. The latter (.beta beta.) show equilibrium thermal unfolding curves that are very similar to those of the parent beta beta noncross-linked species. The .beta-beta. cross-linked species unfolds in a single-phase, cooperative transition with a melting temperature intermediate between the pretransition and posttransition shown by its cross-linked counterpart, the C190 cross-linked, C36-blocked species (.beta-beta.), which was studied earlier. These transitions are compared with one another and with that of the doubly cross-linked species, beta-(-)beta, in the light of two extant physical models for such transitions. The all-or-none segments model successfully rationalizes the data qualitatively for the .beta-beta. and .beta-beta. species if the usual postulates of greater inherent stability of the amino vs the carboxyl end of the molecule and of strain at each cross-link are accepted. However, the same model then requires that the beta-(-)beta species be the least stable of the three, whereas experiment shows the opposite, thus falsifying the all-or-none segments model. The continuum-of-states model is also qualitatively in accord with data on the .beta-beta. and .beta-beta. species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

9.
Slow refolding kinetics in yeast iso-2 cytochrome c   总被引:1,自引:0,他引:1  
J J Osterhout  B T Nall 《Biochemistry》1985,24(27):7999-8005
  相似文献   

10.
The thermal and the urea-induced unfolding profiles of the coiled-coil alpha-helix of native and refolded tropomyosin from chicken gizzard were studied by circular dichroism. Refolding of tropomyosin at low temperature from alpha + beta subunits, dissociated by guanidinium chloride, urea, or high temperature, predominantly produced alpha alpha + beta beta homodimers in agreement with earlier studies of refolding from guanidinium chloride (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The presence of two unfolding transitions in low salt solutions with about equal helix loss verified the composition with the first unfolding transition of the homodimer mixture originating from alpha alpha. In contrast, refolding by equilibrating at temperatures close to physiological, however, produced the native alpha beta heterodimer, which unfolded in a single transition. The refolding kinetics of dissociated alpha + beta subunits indicated that beta beta homodimers form first, leading to alpha alpha homodimers both of which are relatively stable against chain exchange below approximately 25 degrees C. Equilibrating the homodimer mixture at 37-40 degrees C for long times, however, produced the native alpha beta molecule via chain exchange. The equilibria involved indicate that the free energy of formation from subunits of alpha beta is much less than that of (alpha alpha + beta beta)/2. In vivo folding of alpha beta from the two separate alpha and beta gene products is, therefore, thermodynamically favored over the formation of homodimers and biological factors need not be considered to explain the native preferred alpha beta composition.  相似文献   

11.
beta 2-Microglobulin is a small, major histocompatibility complex class I-associated protein that undergoes aggregation and accumulates as amyloid deposits in human tissues as a consequence of long-term haemodialysis. The folding process of this amyloidogenic protein has been studied in vitro by diluting the guanidine hydrochloride-denatured protein in refolding buffer at pH 7.4 and monitoring the folding process by means of a number of spectroscopic probes that allow the native structure of the protein to be detected as it develops. These techniques include fluorescence spectroscopy, far and near-UV circular dichroism, 8-anilino-1-naphthalenesulfonic acid binding and double jump assays. All spectroscopic probes indicate that a significant amount of structure forms within the dead-time of stopped-flow measurements (<5 ms). The folding reaction goes to completion through a fast phase followed by a slow phase, whose rate constants are ca 5.1 and 0.0030 s(-1) in water, respectively. Unfolding-folding double jump experiments, together with the use of peptidyl prolyl isomerase, reveal that the slow phase of folding of beta 2-microglobulin is not fundamentally determined by cis/trans isomerisation of X-Pro peptide bonds. Other folding-unfolding double jump experiments also suggest that the fast and slow phases of folding are not related to independent folding of different populations of protein molecules. Rather, we provide evidence for a sequential mechanism of folding where denatured beta 2-microglobulin collapses to an ensemble of partially folded conformations (I(1)) which fold subsequently to a more highly structured species (I(2)) and, finally, attain the native state. The partially folded species I(2) appears to be closely similar to previously studied amyloidogenic forms of beta 2-microglobulin, such as those adopted by the protein at mildly acid pH values and by a variant with six residues deleted at the N terminus. Since amyloid formation in vivo originates from partial denaturation of beta 2-microglobulin under conditions favouring the folding process, the long-lived, partially structured species detected here might be significantly populated under some physiological conditions and hence might play an important role in the process of amyloid formation.  相似文献   

12.
Using both circular dichroism (CD) and differential scanning calorimetry (DSC), several laboratories find that the thermal unfolding transitions of alpha alpha and beta beta homodimeric coiled coils of rabbit tropomyosin are multistate and display an overall unfolding enthalpy of near 300 kcal (mol dimer)(-1). In contrast, an extant CD study of beta beta and gamma gamma species of chicken gizzard tropomyosin concludes that their unfolding transitions are simple two-state transitions, with much smaller overall enthalpies (98 kcal mol(-1) for beta beta and 162 kcal mol(-1) for gamma gamma). However, these smaller enthalpies have been questioned, because they imply a concentration dependence of the melting temperatures that is far larger than observed by CD. We report here DSC studies of the unfolding of both beta beta and gamma gamma chicken gizzard homodimers. The results show that these transitions are very similar to those in rabbit tropomyosins in that 1) the overall unfolding enthalpy is near 300 kcal mol(-1); 2) the overall delta C(rho) values are significantly positive; 3) the various transitions are multistate, requiring at least two and as many as four domains to fit the DSC data. DSC studies are also reported on these homodimeric species of chicken gizzard tropomyosin with a single interchain disulfide cross-link. These results are also generally similar to those for the correspondingly cross-linked rabbit tropomyosins.  相似文献   

13.
The polymorphic deletion of Glu-155 from human glutathione transferase omega1 (GSTO1-1) occurs in most populations. Although the recombinant ΔGlu-155 enzyme expressed in Escherichia coli is active, the deletion causes a deficiency of the active enzyme in vivo. The crystal structure and the folding/unfolding kinetics of the ΔGlu-155 variant were determined in order to investigate the cause of the rapid loss of the enzyme in human cells. The crystal structure revealed altered packing around the Glu-155 deletion, an increase in the predicted solvent-accessible area and a corresponding reduction in the buried surface area. This increase in solvent accessibility was consistent with an elevated Stern-Volmer constant. The unfolding of both the wild type and ΔGlu-155 enzyme in urea is best described by a three-state model, and there is evidence for the more pronounced population of an intermediate state by the ΔGlu-155 enzymes. Studies using intrinsic fluorescence revealed a free energy change around 14.4 kcal/mol for the wild type compared with around 8.6 kcal/mol for the ΔGlu-155 variant, which indicates a decrease in stability associated with the Glu-155 deletion. Urea induced unfolding of the wild type GSTO1-1 was reversible through an initial fast phase followed by a second slow phase. In contrast, the ΔGlu-155 variant lacks the slow phase, indicating a refolding defect. It is possible that in some conditions in vivo, the increased solvent-accessible area and the low stability of the ΔGlu-155 variant may promote its unfolding, whereas the refolding defect limits its refolding, resulting in GSTO1-1 deficiency.  相似文献   

14.
The guanidinium chloride-unfolded state of ribonuclease A was found to be an equilibrium mixture of slow- and fast-refolding forms of the protein chain, as has been suggested. Both forms appear to have the same spectroscopic observables as judged by the relative changes in fluorescence emission and polarization. The equilibrium between them is thermally dependent, with deltaHapp equal to -1.4 kcal/mol. The activation energy Ea is equal to 18 kcal/mol. These findings are consistent with the proposal that cis-trans isomerism of peptide bonds that are NH2-terminal to proline residues is responsible for the slow phase of RNase A refolding. However, the actual dependence of the magnitude of the slow reaction on initial, prefolding temperature cannot be explained by a model in which the proline configurations of the fast refolding form must be identical to those of the native protein, as has been suggested. Instead, the data reveal that, although the native structure of RNase A contains two cis prolines, cis isomers need not be present in the fast-refolding form in order for folding to occur.  相似文献   

15.
Disulfide exchange folding of insulin-like growth factor I.   总被引:11,自引:0,他引:11  
The disulfide exchange folding properties of insulin-like growth factor I (IGF-I) have been analyzed in a redox buffer containing reduced (10 mM) and oxidized (1 mM) glutathione. Under these conditions, the 3 disulfide bridges of the 70 amino acid peptide were not quantitatively formed. Instead, five major forms of IGF-I were detected, and these components were concluded to be in equilibrium as their relative amounts were similar starting from either reduced, native, or a mismatched variant of IGF-I containing two non-native disulfides. The different components in the mixtures were trapped by thiol alkylation using vinylpyridine and subsequently isolated by reverse-phase HPLC. The purified variants were further characterized using plasma desorption mass spectrometry and peptide mapping. Two of the five different forms were identified as native and mismatched IGF-I. One form was a variant with only one disulfide bond, and the other two major components had two disulfides formed. In a separate experiment, early refolding intermediates were trapped by pyridylethylation after only 90 s of refolding in the glutathione buffer, starting from reduced IGF-I. The intermediates were identical to the components observed at equilibrium, but at different relative concentrations. On the basis of the disulfide bond patterns of the different components in the equilibrium mixtures, we conclude that the disulfide between cysteines-47 and -52 in IGF-I is an unfavorable high-energy bond that may exist in the native molecule in a strained configuration.  相似文献   

16.
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.  相似文献   

17.
Preferential assembly of the tropomyosin heterodimer: equilibrium studies   总被引:3,自引:0,他引:3  
S S Lehrer  W F Stafford 《Biochemistry》1991,30(23):5682-5688
Thermal unfolding/refolding studies of the three tropomyosin dimers, alpha alpha, alpha beta, and beta beta, from chicken gizzard muscle were performed to explain the preferential assembly of alpha- and beta-tropomyosin subunits into heterodimers, alpha beta [Lehrer, S. S., & Qian, Y. (1989) J. Biol. Chem. 265, 1134]. Circular dichroism measurements showed that all three dimers unfolded in cooperative reversible transitions with T1/2 = 40.0 degrees C and delta H degrees = 162 kcal/mol for alpha alpha and with T1/2 = 42.6 degrees C and delta H degree = 98 kcal/mol for beta beta at 0.4-0.5 microM concentrations. Fluorescence measurements on pyrenyliodoacetamide-labeled tropomyosin showed that (i) excimer fluorescence decreases in parallel with unfolding of homodimers, (ii) at physiological temperature, heterodimers are formed from micromolar mixtures of homodimers over a period of minutes, and (iii) heterodimers unfold/refold with temperature without appreciable formation of homodimers. To understand the preferential formation of alpha beta, we calculated the concentrations of all species present as a function of temperature for equal total amounts of alpha and beta, using the measured thermodynamic constants of the unfolding/dissociation equilibria for alpha alpha and beta beta. Values for delta H degrees = 225 kcal/mol and T1/2 = 43 degrees C for unfolding of alpha beta at 0.5 microM concentration were obtained from the best fit of the calculations to the measured helical content vs temperature of alpha beta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To get new structural insights into different phases of the renaturation of ribonuclease T1 (RNase T1), the refolding of the thermally unfolded protein was initiated by rapid temperature jumps and detected by time-resolved Fourier-transform infrared spectroscopy. The characteristic spectral changes monitoring the formation of secondary structure and tertiary contacts were followed on a time scale of 10(-3) to 10(3) seconds permitting the characterization of medium and slow folding reactions. Additionally, structural information on the folding events that occurred within the experimental dead time was indirectly accessed by comparative analysis of kinetic and steady-state refolding data. At slightly destabilizing refolding temperatures of 45 degrees C, which is close to the unfolding transition region, no specific secondary or tertiary structure is formed within 180 ms. After this delay all infrared markers bands diagnostic for individual structural elements indicate a strongly cooperative and relatively fast folding, which is not complicated by the accumulation of intermediates. At strongly native folding temperatures of 20 degrees C, a folding species of RNase T1 is detected within the dead time, which already possesses significant amounts of antiparallel beta-sheets, turn structures, and to some degree tertiary contacts. The early formed secondary structure is supposed to comprise the core region of the five-stranded beta-sheet. Despite these nativelike characteristics the subsequent refolding events are strongly heterogeneous and slow. The refolding under strongly native conditions is completed by an extremely slow formation or rearrangement of a locally restricted beta-sheet region accompanied by the further consolidation of turns and denser backbone packing. It is proposed that these late events comprise the final packing of strand 1 (residues 40-42) of the five-stranded beta-sheet against the rest of this beta-sheet system within an otherwise nativelike environment. This conclusion was supported by the comparison of refolding of RNase T1 and its variant W59Y RNase T1 that enabled the assignment of these very late events to the trans-->cis isomerization reaction of the prolyl peptide bond preceding Pro-39.  相似文献   

19.
The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1). correct folding can only take place in combined presence of beta(2)-microglobulin and a binding peptide; and (2). optimal in vitro conditions for disulfide bond formation ( approximately pH 8) and peptide binding ( approximately pH 6.6) are far from complementary. Here we present a two-step strategy, which relies on uncoupling the events of disulfide bond formation and peptide binding. In the first phase, heavy-chain molecules with correct disulfide bonding are formed under non-reducing denaturing conditions and separated from scrambled disulfide bond forms by hydrophobic interaction chromatography. In the second step, rapid refolding of the oxidized heavy chains is afforded by disulfide bond-assisted folding in the presence of beta(2)-microglobulin and a specific peptide. Under conditions optimized for peptide binding, refolding and simultaneous peptide binding of the correctly oxidized heavy chain was much more efficient than that of the fully reduced molecule.  相似文献   

20.
The role of the secondary structure in the folding mechanism of dihydrofolate reductase from Escherichia coli was probed by studying the effects of amino acid replacements in two alpha helices and two strands of the central beta sheet on the folding and stability. The effects on stability could be qualitatively understood in terms of the X-ray structure for the wild-type protein by invoking electrostatic, hydrophobic, or hydrogen-bonding interactions. Kinetic studies focused on the two slow reactions that are thought to reflect the unfolding/refolding of two stable native conformers to/from their respective folding intermediates [Touchette, N. A., Perry, K. M., & Matthews, C. R. (1986) Biochemistry 25, 5445-5452]. Replacements at three different positions in helix alpha B selectively alter the relaxation time for unfolding while a single replacement in helix alpha C selectively alters the relaxation time for refolding. This behavior is characteristic of mutations that change the stability of the protein but do not affect the rate-limiting step. In striking contrast, replacements in strands beta F and beta G can affect both unfolding and refolding relaxation times. This behavior shows that these mutations alter the rate-limiting step in these native-to-intermediate folding reactions. It is proposed that the intermediates have an incorrectly formed beta sheet whose maturation to the structure found in the native conformation is one of the slow steps in folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号