首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VanX, a d,d-dipeptidase, is one of five gene products responsible for vancomycin resistance in pathogenic bacteria and is an attractive drug target in circumventing clinical drug resistance. Our previous combinatorial search of VanX substrates in a dipeptide library of d-X(1)-d-X(2) (19(2)=361) forms has led to the discovery of three new compounds (d-Ala-d-Phe, d-Ala-d-Tyr, and d-Ala-d-Trp) having higher k(cat)/K(M) values than those of its natural substrate, d-Ala-d-Ala. Based on structures of newly identified substrates, two representative transition state analogs of substrates, d-Ala(P,O)d-Phe (6a) and d-Ala(P,O)d-Ala (6b) dipeptide phosphonates, used as VanX inhibitor were rationally designed and chemically synthesized. In the synthesis, eight synthetic steps in total were employed for preparing each VanX inhibitor, and their overall isolated yields were 21 and 11% for 6a and 6b, respectively. Binding interactions of d-Ala(P,O)d-Phe (6a) and d-Ala(P,O)d-Ala (6b) with VanX were confirmed unambiguously and measured quantitatively by surface plasmon resonance. The result reveals that both dipeptide phosphonates are slow-binding inhibitors of VanX (for 6a, k(on)=1.18 x 10(3)M(-1)s(-1), k(off)=2.31 x 10(-3) s(-1), K(D)=1.96 microM, chi(2)=0.0737; for 6b, k(on)=1.09 x 10(3)M(-1)s(-1), k(off)=1.80 x 10(-2)s(-1), K(D)=16.5 microM, chi(2)=0.0599). This suggests that only a fraction of the conformers of the inhibitors in solution adopts a conformation best suited for binding interaction with VanX and that the VanX-inhibitor complex may concomitantly undergo a conformational isomerization from an initial but fast weak-binding adduct to slowly convert to a tight-binding complex with a more stable bound geometry. Moreover, in comparison with 6b, an additional aromatic interaction of 6a with the Phe79 residue in the active site of the enzyme, through an energetically favorable face-to-face offset stacked orientation, may account for its higher affinity than 6b to VanX.  相似文献   

2.
This paper describes a procedure, based on direct binding, for identifying tight-binding ligands for a receptor immobilized on a sensor chip from an array of equimolar tripeptides using surface plasmon resonance. Vancomycin and a library of 96 tripeptides, with molecular weight ranging from 316 to 560 Da, were used as a model system to illustrate the procedure. A consensus structure of the strongest interacting peptides consisted of D-Ala at the C terminus and aromatic amino acid in the penultimate position. Ligands having this structure bound more tightly to vancomycin than the known D-Ala-D-Ala peptide. The throughput of our continuous assay is 96 compounds in 3.3 h, and the sample consumption is less than 2 microg per peptide and 1 ng for vancomycin. This procedure should be applicable to peptide libraries of greater complexity than that used here and to mixtures of small organic compounds.  相似文献   

3.
Surface plasmon resonance (SPR) spectroscopy has been used to study DNA assembly, DNA hybridization, and protein-DNA interactions on two streptavidin (SA) sensor chips. On one chip, SA molecules are immobilized on a biotin-exposed surface, forming an ordered two-dimensional (2D) SA monolayer. The other chip, BIAcore's SA chip, contains SA molecules immobilized within a three-dimensional (3D) carboxylated dextran matrix. Compared to the 2D chip, the 3D SA matrix allows for a slower immobilization rate of biotinylated DNA due to diffusion limitation in the dextran matrix, but with twice the amount of the immobilized DNA due to the greater number of reactive sites, which in turn enables a higher sensitivity for DNA hybridization detection. Interestingly, having a greater DNA probe dispersion in the 3D matrix does not induce a higher DNA hybridization efficiency. In a study of protein binding to immobilized DNA (estrogen receptor to estrogen response elements), aiming at assessing the DNA sequence dependent protein binding behavior, the 2D and 3D chips produce different binding characteristics. On the 2D chip, the protein binding exhibits a better selectivity to the specific sequences, regardless of binding stringency (e.g. salt concentration), whereas on the 3D chip, the liquid handling system needs to be optimized in order to minimize transport limitations and to detect small affinity differences. Through this study we demonstrate that the physicochemical structure of SPR chips affects the apparent binding behaviors of biomolecules. When interpreting SPR binding curves and selecting a sensor chip, these effects should be taken into account.  相似文献   

4.
A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance (SPR) detection. A biodegradable polyrotaxane in whichca. 22 molecules of α-cyclodextrins (α-CDs) were threaded onto a poly(ethylene oxide) chain (M n: 4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activating the hydroxyl groups of α-CDs in the polyrotaxane usingN,N′-carbony diimidazole. The results of the high-resolution1H-nuclear magnetic resonance (1H-NMR) spectra and gel permeation chromatography of the conjugate showed thatca. 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was actually recognized by streptavidin. The association equilibrium constant (K a) of the interaction between the conjugate and streptavidin tetramer was of the order 107. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.  相似文献   

5.
The dextran matrix of a surface plasmon resonance (SPR) sensor chip modified with hydrophobic residues (BIAcore sensor chip L1) provides an ideal substrate for liposome adsorption. Liposomes of different lipid compositions are captured on the sensor chips by inserting these residues into the liposome membrane, thereby generating stable lipid surfaces. To gain a more detailed understanding of these surfaces, and to prove whether the liposomes stay on the matrix as single particles or form a continuous lipid layer by liposome fusion, we have investigated these materials, using atomic force microscopy (AFM) and fluorescence microscopy. Force measurements with AFM probes functionalized with bovine serum albumin (BSA) were employed to recognize liposome adsorption. Analysis of the maximal adhesive force and adhesion energy reveals a stronger interaction between BSA and the dextran matrix compared to the lipid-covered surfaces. Images generated using BSA-coated AFM tips indicated a complete and homogeneous coverage of the surface by phospholipid. Single liposomes could not be detected even at lower lipid concentrations, indicating that the liposomes fuse and form a lipid bilayer on the dextran matrix. Experiments with fluorescently labeled liposomes concurred with the AFM studies. Surfaces incubated with liposomes loaded with TRITC-labeled dextran showed no fluorescence, indicating a complete release of the encapsulated dye. In contrast, surfaces incubated with liposomes containing a fluorescently labeled lipid showed fluorescence.  相似文献   

6.
Nitrilotriacetic acid has been routinely used in protein purification for its high affinity for His-tagged protein in the presence of Ni2+. Here we reported a type of nitrilotriacetic acid chip (NTA-chip) prepared by transferring NTA-DOGS containing a lipid monolayer to a 50 nm thick gold layer deposited on a glass slide. The surface binding ability of His-tagged protein and regeneration of NTA chip were characterized using a synthetic polypeptide P1 (His-His-His-His-His-His--aminohexanoic-Gly-Gly-Arg-Gly-Asp-Ser). The effect of divalent cations on integrin binding affinity for RGD ligand was investigated after P1 had been immobilized onto the sensor chip. The results show that the NTA-chip is a useful tool to immobilize His-tagged protein on the chip surface, and can provide a functional orientation for further investigation. The results also show that removing of Ca2+ bound on low affinity sites or adding of Mn2+ can increase the binding ability of integrin.  相似文献   

7.
Taking advantage of the "open" nature of cell-free protein synthesis, this study investigated the direct analysis of protein expression using a surface plasmon resonance sensor. During the on-chip incubation of the reaction mixture for cell-free protein synthesis, the expressed protein molecules were immobilized onto the surface of the chip, giving rise to a sensorgram signal, which enabled on-line monitoring of protein expression. In addition, we found that the expression of the aggregation-prone proteins could be effectively monitored. The ability to monitor these proteins was most likely through the instant isolation of the expressed protein molecules onto the solid surface of the chip.  相似文献   

8.

Background  

The topoisomerase I (TopI) reaction intermediate consists of an enzyme covalently linked to a nicked DNA molecule, known as a TopI-DNA complex, that can be trapped by inhibitors and results in failure of re-ligation. Attempts at new derivative designs for TopI inhibition are enthusiastically being pursued, and TopI inhibitors were developed for a variety of applications. Surface plasmon resonance (SPR) was recently used in TopI-inhibition studies. However, most such immobilized small molecules or short-sequence nucleotides are used as ligands onto sensor chips, and TopI was used as the analyte that flowed through the sensor chip.  相似文献   

9.
We report here the development and application of a biosensor-based technology that employs surface plasmon resonance for label-free studies of molecular interactions in real time. The sensor chip interface, comprising a thin layer of gold deposited on a glass support, is derivatized with a flexible hydrophilic polymer to facilitate the attachment of specific ligands to the surface and to increase the dynamic range for surface concentration measurements. The sensor can be used to measure surface concentrations down to 10 pg/mm2. Typical coefficients of variation are from two to five percent. We anticipate that the ability to monitor multi-molecular complexes as they form will greatly contribute to the understanding of biorecognition and the structural basis of molecular function.  相似文献   

10.
We describe an antibody chip technology that uses a surface plasmon resonance (SPR) imaging system to examine the conformational change of a protein. In this study, we used Bax protein, a pro-apoptotic member of the Bcl-2 family of proteins, as a model protein to investigate the conformational alteration triggered by a TNF-related apoptosis-inducing ligand (TRAIL), a potent inducer of apoptosis. To develop the antibody chip for detecting the Bax conformational change, we immobilized Bax monoclonal antibody 6A7, which recognizes only a conformationally changed Bax protein on a gold surface. The resultant immobilized Bax antibodies provided specific and accurate measurements of the active conformation-specific epitope in the apoptotic cancer cells treated with the TRAIL; these measurements corresponded to the data obtained by immunoprecipitation analysis using an active conformation-specific Bax antibody (6A7). The results of our study indicated that TRAIL-induced Bax structural change could be monitored quickly and simply using an SPR imaging system, thus demonstrating the potential for using such a system for the analysis of conformational properties of target proteins.  相似文献   

11.
It has recently been proposed that the role of neuroglobin in the protection of neurons from ischaemia induced cell death requires the formation of a transient complex with cytochrome c. No such complex has yet been isolated. Here, we present the results of soft docking calculations, which indicate one major binding site for cytochrome c to neuroglobin. The results yield a plausible structure for the most likely complex structure in which the hemes of each protein are in close contact. NMR analysis identifies the formation of a weak complex in which the heme group of cytochrome c is involved. surface plasmon resonance studies provide a value of 45muM for the equilibrium constant for cytochrome c binding to neuroglobin, which increases significantly as the ionic strength of the solution increases. The temperature dependence of the binding constant indicates that the complex formation is associated with a small unfavourable enthalpy change (1.9kcalmol(-1)) and a moderately large, favourable entropy change (14.8calmol(-1)deg(-1)). The sensitivity of the binding constant to the presence of salt suggests that the complex formation involves electrostatic interactions.  相似文献   

12.
In this paper the development and feasibility of a novel detection system for a low molecular weight chemical, in which a peptide was utilized as a binding molecule, are described. Surface plasmon resonance (SPR) apparatus was used as a transducer. The porphyrin binding peptide, PSP2, was used as a model peptide ligand, while a porphyrin derivative, H2TMpyP, was used as a model low-molecular-weight chemical. PSP2 was covalently immobilized onto the SPR sensor chip and SPR measurement using the PSP2-immobilized chip for various concentrations of porphyrin was carried out. H2TMpyP was detectable in the range from 100 ng ml−1 to 10 μg ml−1 with a linear correlation and good precision and the PSP2-immobilized chip could be regenerated within 1 min after measurement in this system. From comparison of the detection manners of three porphyrin derivatives, the ability of a short peptide to discriminate between differences in molecular structure was demonstrated. Moreover, the self-assembled monolayer (SAM) of PSP2 was successfully prepared on the gold substrate and H2TMpyP could be detected using the PSP2-SAM chip.  相似文献   

13.
Interactions between the immobilized weak-affinity monoclonal IgG antibody 39.5, which is specific for the glucose-alpha 1,4-glucose motif, and various oligosaccharides were studied with surface plasmon resonance technology. The antibody was immobilized at high levels on the surface of the sensor chip and different concentrations of the analytes were injected at 25 and 40 degrees C. The 39.5 antibody exhibited specific binding to maltose, tetraglucose and maltotriose, with dissociation constants Kd in the range from 0.07 mM (25 degrees C) to 1.0 mM (40 degrees C). Association and dissociation rate constants (ka and kd) were rapid and baseline was obtained almost immediately after the end of each antigen injection. This excluded the need for a regeneration step but also made calculation of the kinetic values impossible. Owing to the weak affinity and the small size of the analytes (< 1000 Da), a careful design of control surfaces is demanded to exclude artefactual results.  相似文献   

14.
RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer sequences, FC5 and FC45 with K(d) values of 2.50 and 4.00 microM, respectively, were extensively studied. Corresponding mini-aptamers for FC5 and FC45 were subsequently identified through the described direct coupling Biacore assays. These assays were also employed to confirm the proposed secondary structures of the mini-aptamers. Both aptamers exhibit high specificity to codeine over morphine, which differs from codeine by a methyl group. Finally, the direct coupling method was demonstrated to eliminate potential non-specific interactions that may be associated with indirect coupling methods in which protein linkers are commonly employed. Therefore, in addition to presenting the first RNA aptamers to a subclass of benzylisoquinoline alkaloid molecules, this work highlights a method for characterizing small molecule aptamers that is more robust, precise, rapid and high-throughput than other commonly employed techniques.  相似文献   

15.
Grating-coupled surface plasmon resonance imaging (GCSPRI) is a method for the accurate assessment of both cell phenotype and function. In GCSPRI, cells and/or proteins of interest are flowed across antibodies immobilized on a gold-coated sensor chip. The surface of the chip is illuminated with monochromatic light that couples with surface plasmons in the gold. At a specific angle of incidence, the GCSPR angle, the maximum amount of coupling occurs. Shifts in the GCSPR angle can be correlated with refractive index changes following cell or analyte capture by the immobilized antibodies. In addition, GCSPRI can image the cells as they are being captured. GCSPRI's multiplexed format allows for the parallel assessment of up to 400 individual antibody regions. In this paper, we demonstrate GCSPRI's ability to identify cells and proteins of interest and compare results to a traditional flow cytometry system. This technology represents a fast and powerful method for the simultaneous assessment of cell phenotype and function.  相似文献   

16.
We have developed a simple assay method for the evaluation of estrogen receptor (ER) binding capacity of chemicals without the use of radio- or fluorescence-labeled compounds. We used the solution competition assay by the BIACORE biosensor, a surface plasmon resonance biosensor, with estradiol as a ligand, human recombinant ER(alpha) (hrER(alpha)) as a high molecular weight (hmw) interactant and test chemicals as analytes. For the ligand, aminated estradiol with a spacer molecule (E2-17PeNH) was synthesized and immobilized on a carboxymethyl dextran-coated sensor chip by the amine coupling method. The injection of the hmw interactant hrER(alpha) to the biosensor raised the sensorgram, indicating its binding to the ligand E2-17PeNH. The binding of test chemicals to hrERalpha was determined as a reduction in the hrER(alpha) binding to E2-17PeNH. The dissociation constant for the binding to hrER(alpha) was calculated for estrone (4.29 x 10(-9)M), estradiol (4.04 x 10(-10)M), estriol (8.35 x 10(-10)M), tamoxifen (2.16 x 10(-8)M), diethylstilbestrol (1.46 x 10(-10)M), bisphenol A (1.35 x 10(-6)M) and 4-nonylphenol (7.49 x 10(-6)M), by plotting the data according to an equation based on mass action law. This method can also be used as a high throughput screening method.  相似文献   

17.
A new binding assay to investigate the mechanism of adhesion of lactic acid bacteria to the human intestine was established by the surface plasmon resonance technique using a biosensor BIACORE1000. Cells of 26 strains of the Lactobacillus acidophilus group as analytes were eluted onto a sensor chip on which were immobilized biotinylated A-trisaccharide polymer probes having human A-type antigen [(GalNAcalpha1-3(Fucalpha1-2)Gal)-] or human colonic mucin of blood type A (HCM-A) as ligands. In the first screening, high adhesive affinity to the A-trisaccharide BP-probe was observed in L. acidophilus OLL2769, L. crispatus JCM8778, LA205 and LA206. In the second screening, which used HCM-A, only L. acidophilus OLL2769 and L. crispatus JCM8778 were selected as adhesive strains with specific binding ability to human A-antigen. The results indicated that some strains of the L. acidophilus group could recognize and bind the sugar chain of A-antigen structure on HCM.  相似文献   

18.
The aim of this study was to construct a gene chip system based on a surface plasmon resonance technique, where peptide nucleic acid (PNA) oligomers are used as probes. Since the self-assembled monolayer (SAM) technology offers good control at the molecular level, we prepared 2D surface chemistry via SAM for probe attachments. PNA, which was designed according to the bioinformatics, was immobilized on the SAM-modified chip, and subsequently, relevant parameters of the experiment were ensured and optimized. Our results suggest that the ion strength and pH value of the buffer solution do not play significant roles in PNA or its complementary strand hybridization. The PNA probe binds to its complementary nucleic acid strand with a higher sensitivity and specificity compared to those of a traditional DNA probe. The PNA probe combined with surface plasmon resonance (SPR) technology has the benefits of being a label-free and in-real time monitor, as well as having improved hybridization and stability efficiency, which highlight the PNA gene chip detection system as a promising biosensor for clinical applications.  相似文献   

19.
Surface plasmon resonance (SPR) as a label-free biosensor technique has become an important tool in drug discovery campaigns during the last couple of years. For good assay performance, it is of high interest to verify the functional activity on the immobilization of the target protein on the chip. This study illustrates the verification of the catalytic activity of the drug target protein PqsD by monitoring substrate conversion as a decrease in SPR signal and product detection by ultra high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS(2)). This assay would be applicable to control surface activity of immobilized ligands.  相似文献   

20.
This paper presents the equations and methodology for the measurement and interpretation of apparent dissociation constants for polyclonal populations of antibodies, where antigen is kept trace relative to antibody concentration. Surface plasmon resonance is used to determine K(d)s for the binding of anti-DNA antibodies to trace amounts of DNA antigen on a chip. Since the approach taken relies on equilibrium measurements, kinetic mass transport artifacts are avoided. The apparent K(d) is a weighted average of all the K(d)s for the clonally related subpopulations within the polyclonal pool, where each weighting factor is the relative titer (fractional presence) of the subpopulation. Titration curves appear as if there is one monoclonal population with that titer-weighted-average K(d). Implications of changes in the antibody affinity distribution within the population are discussed. The equations described herein provide a better physical understanding of the apparent K(d) that is obtained when a heterogeneous population of receptors is titrated against a trace ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号