首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate induces cell death by upsetting the cellular redox homeostasis, termed oxidative glutamate toxicity, in a mouse hippocampal cell line, HT22. Extracellular signal-regulated kinases (ERK) 1/2 are known key players in this process. Here we characterized the roles of both MAP kinases and cell cycle regulators in mediating oxidative glutamate toxicity and the neuroprotective mechanisms of curcumin in HT22 cells. c-Jun N-terminal kinase (JNK) and p38 kinase were activated during the glutamate-induced HT22 cell death, but at a later stage than ERK activation. Treatment with a JNK inhibitor, SP600125, or a p38 kinase inhibitor, SB203580, partly attenuated this cell death. Curcumin, a natural inhibitor of JNK signaling, protected the HT22 cells from glutamate-induced death at nanomolar concentrations more efficiently than SP600125. These doses of curcumin affected neither the level of intracellular glutathione nor the level of reactive oxygen species, but inactivated JNK and p38 significantly. Moreover, curcumin markedly upregulated a cell-cycle inhibitory protein, p21cip1, and downregulated cyclin D1 levels, which might help the cell death prevention. Our results suggest that curcumin has a neuroprotective effect against oxidative glutamate toxicity by inhibiting MAP kinase signaling and influencing cell-cycle regulation.  相似文献   

2.
3.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

4.
The hormonal form of vitamin D, calcitriol, and its analogs are known for their beneficial effect in the treatment of inflammatory skin disorders. Keratinocytes play a role in epidermal inflammatory responses invoked by breeching of the epidermal barrier, by infectious agents and by infiltrating immune cells. We studied the role of calcitriol in the initiation of keratinocyte inflammatory response by the viral and injury mimic polyinosinic-polycytidylic acid (poly(I:C)) and in its maintenance by tumor-necrosis-factor α (TNFα) and investigated the role of the mitogen-activated protein kinase cascades in these processes and their regulation by calcitriol. The inflammatory response of human HaCaT keratinocytes to poly(I:C) or TNFα was assessed by measuring mRNA levels of 13 inflammation-related molecules by real-time PCR microarray and by in-depth investigation of the regulation of interleukin 8, intercellular-adhesion-molecule 1, and TNFα expression. We found that while calcitriol had only a minor effect on the keratinocyte response to poly(I:C) and a modest effect on the early response (2 h) to TNFα, it markedly attenuated the later response (16-24 h) to TNFα. The expression of CYP27B1, the enzyme responsible for calcitriol production, was marginally increased by poly(I:C) and markedly by TNFα treatment. This pattern suggests that while allowing the initial keratinocyte inflammatory response to proceed, calcitriol contributes to its timely resolution. Using pharmacological inhibitors we found that while the p38 MAPK and the extracellular signal-regulated kinase have only a minor role, c-Jun N-terminal kinase plays a pivotal role in the induction of the pro-inflammatory genes and its modulation by calcitriol.  相似文献   

5.
6.
Oxidative stress generated by dopamine (DA) oxidation could be one of the factors underlying the selective vulnerability of nigral dopaminergic neurons in Parkinson's diseases. Here we show that DA induces apoptosis in SH-SY5Y neuroblastoma cells demonstrated by activation of caspase-9 and caspase-3, cleavage of poly(ADP-ribose) polymerase as well as nuclear condensation. We also show that p38 mitogen-activated protein kinase is activated within 10 min of DA treatment, which precedes the onset of apoptosis because the potent p38 kinase inhibitor SB203580 protects against DA-induced cell death as well as against caspase-9 and caspase-3 activation. In addition, the antioxidant N-acetyl-L-cysteine (NAC) effectively blocks DA-induced p38 kinase activation, caspase-9 and caspase-3 cleavage and subsequent apoptosis, indicating that DA triggers apoptosis via a signaling pathway that is initiated by the generation of reactive oxygen species (ROS). Dopamine exerts its toxicity principally intracellularly as the DA uptake inhibitor, nomifensine significantly reduces DA-induced cell death as well as activation of p38 kinase and caspase-3. Furthermore, DA induces mitochondrial cytochrome c release, which is dependent on p38 kinase activation and precedes the cleavage of caspases. These observations indicate that DA induces apoptosis primarily by generating ROS, p38 kinase activation, cytochrome c release followed by caspase-9 and caspase-3 activation.  相似文献   

7.
Ma J  Zhang L  Han W  Shen T  Ma C  Liu Y  Nie X  Liu M  Ran Y  Zhu D 《Journal of lipid research》2012,53(6):1093-1105
Pulmonary artery endothelial plexiform lesion is responsible for pulmonary vascular remodeling (PVR), a basic pathological change of pulmonary arterial hypertension (PAH). Recent evidence suggests that epoxyeicosatrienoic acid (EET), which is derived from arachidonic acid by cytochrome p450 (CYP) epoxygenase, has an essential role in PAH. However, until now, most research has focused on pulmonary vasoconstriction; it is unclear whether EET produces mitogenic and angiogenic effects in pulmonary artery endothelial cells (PAEC). Here we found that 500 nM/l 8,9-EET, 11,12-EET, and 14,15-EET markedly augmented JNK and c-Jun activation in PAECs and that the activation of c-Jun was mediated by JNK, but not the ERK or p38 MPAK pathway. Moreover, treatment with 8,9-EET, 11,12-EET, and 14,15-EET promoted cell proliferation and cell-cycle transition from the G0/G1 phase to S phase and stimulated tube formation in vitro. All these effects were reversed after blocking JNK with Sp600125 (a JNK inhibitor) or JNK1/2 siRNA. In addition, the apoptotic process was alleviated by three EET region isomers through the JNK/c-Jun pathway. These observations suggest that 8,9-EET, 11,12-EET, and 14,15-EET stimulate PAEC proliferation and angiogenesis, as well as protect the cells from apoptosis, via the JNK/c-Jun pathway, an important underlying mechanism that may promote PAEC growth and angiogenesis during PAH.  相似文献   

8.
The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK.

These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis.  相似文献   


9.
c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is activated in response to a number of extracellular stimuli, including inflammatory cytokines, UV irradiation and ischaemia. A large body of evidence supports a role for JNK signalling in stress-induced apoptosis. It has been hypothesized that JNK may contribute to the apoptotic response by regulating the intrinsic cell death pathway involving the mitochondria. Here, we examined the role of the JNK signalling pathway in hippocampal CA1 apoptotic neurones following transient ischaemia in gerbils. We showed early activation of death receptor-dependent apoptosis (caspase-8 activation 2 days after ischaemia) and a biphasic activation of caspase-3 and caspase-9 after ischaemia. Activation of the mitochondrial pathway, as measured by cytochrome c release, appeared as a late event (5-7 days after ischaemia). AS601245, a novel JNK inhibitor, antagonized activation of both pathways and significantly protected CA1 neurones from cell death. Our results suggest a key role of JNK in the control of death receptor and mitochondrial-dependent apoptosis after transient ischaemia.  相似文献   

10.
11.
The active form of vitamin D, 1α,25‐dihydroxyvitamin D3 (1,25(OH)2D) inhibits the growth of prostate epithelial cells, however the underlying mechanisms have not been clearly delineated. In the current study, the impact of 1,25(OH)2D on the rapid activation of extracellular‐regulated kinase (ERK) 1/2 and protein kinase C α (PKCα), and the role of these pathways in growth inhibition was examined in immortalized mouse prostate epithelial cells, MPEC3, that exhibit stem/progenitor cell characteristics. 1,25(OH)2D treatment suppressed the growth of MPEC3 in a dose and time dependent manner (e.g., 21% reduction at three days with 100 nM 1,25(OH)2D treatment). However, ERK1/2 activity was not altered by 100 nM 1,25(OH)2D treatment for time points from 1 min to 1 h in either serum‐containing or serum‐free medium. Similarly, PKCα activation (translocation onto the plasma membrane) was not regulated by short‐term treatment of 100 nM 1,25(OH)2D. In conclusion, 1,25(OH)2D did not mediate rapid activation of ERK1/2 or PKCα in MPEC3 and therefore the growth inhibitory effect of 1,25(OH)2D is independent of rapid activation of these signaling pathways in this cell type. J. Cell. Biochem. 107: 1031–1036, 2009. © 2009 Wiley‐Liss, Inc. This article was published online 2 June 2009. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 15 June 2009.  相似文献   

12.
UDP-galactose-4-epimerase (GALE) is a key enzyme catalyzing the interconversion of UDP-glucose and UDP-galactose, as well as UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine, which are all precursors for the proteoglycans (PGs) synthesis. However, whether GALE is essential in cartilage homeostasis remains unknown. Therefore, we investigated the role of GALE in PGs synthesis of human articular chondrocytes, the GALE expression in OA, and the regulation of GALE expression by interleukin-1beta (IL-1β). Silencing GALE gene with specific siRNAs resulted in a markedly inhibition of PGs synthesis in human articular chondrocytes. GALE protein levels were also decreased in both human and rat OA cartilage, thus leading to losses of PGs contents. Moreover, GALE mRNA expression was stimulated by IL-1β in early phase, but suppressed in late phase, while the suppression of GALE expression induced by IL-1β was mainly mediated by stress-activated protein kinase/c-Jun N-terminal kinase pathway. These data indicated a critical role of GALE in maintaining cartilage homeostasis, and suggested that GALE inhibition might contribute to OA progress.  相似文献   

13.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   

14.
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.  相似文献   

15.
Quinolines are known to be multitarget agents with a broad spectrum of biological activity. In a previous study, we showed that newly prepared 4-amino-3-acetylquinoline (AAQ) possesses strong anticancer activities. In this study, we investigated whether AAQ has cytotoxicity in murine L1210 leukemia cells. Results from cell proliferation assays showed that AAQ caused significant decrease in cell number in a dose-dependent manner. The cell death induced by AAQ appeared to involve apoptosis, based on evidence from apoptotic DNA fragmentation, flow cytometry, fluorescence microscopy, and Western blot analyses. We found that AAQ-treated cells had activated p38 MAPK and that apoptosis was processed through a reactive oxygen species (ROS)-dependent mitochondrial pathway. In summary, our results suggest that AAQ can induce apoptosis, at least in part, through the activation of the p38 MAPK pathway in L1210 leukemia cells.  相似文献   

16.

Background  

Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc) is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells.  相似文献   

17.
18.
Yin ZM  Sima J  Wu YF  Zhu J  Jiang Y 《Cell research》2004,14(5):434-438
The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off inducible NIH3T3 cell line was selected by luciferase reporter gene and a double stable C-JNK Aa (203-424) cell line was established. After withdrawing tetracycline, the C-JNK fragment expression was induced and cell growth was dramatically inhibited 24 h later. However, the expresion of p53 was found to be increased after the induction of C-JNK fragment, evaluated by transfecting p21^waf-luciferase reporter genes. Our further studies showed that C-JNK fragment could form complex with p53 both in vivo and in vitro. Induction of C-JNK fragment in vivo can increase p53 stability by inhibiting p53 ubiquitination.  相似文献   

19.
目的:研究低氧性大鼠肺动脉平滑肌细胞(PASMC)的增殖、凋亡与丝裂原活化蛋白激酶(MAPK)关系。方法:用组织酶消化法获取肺动脉平滑肌细胞(PASMCs),进行原代培养;采用普通光学显微镜和免疫荧光染色法,分别鉴定PASMCs;选择处于对数生长期的4~6代PASMCs,随机分为7组进行造模:常氧对照组(N)、低氧组(H)、DM-SO组(D)、U0126组(U)、SB203580组(S)、Anisomycin组(A)、Staurosporine Aglycone组(SA);N组加入10%培养基后置于常氧培养箱中,其它各组分别加入含相应药物的10%培养基后置于低氧培养箱(3% O2,5% CO2,37℃)中,造模时间均为48 h。CCK-8法检测各组PASMCs增殖情况;TUNEL法测定各组PASMCs凋亡情况。结果:与N组相比,H组PASMCs的OD值显著上调(0.990 ±0.041 vs 1.143 ±0.033,P < 0.01),凋亡指数没有明显变化(4.913 ±0.451 vs 5.452 ±0.557,P > 0.05);与H组相比,D组PASMCs的OD值和凋亡指数均无显著变化(1.143 ±0.033 vs 1.142 ±0.049,5.452 ±0.557 vs 5.402 ±0.651,均P > 0.05);U组PASMCs的OD值下降,凋亡指数升高(1.143 ±0.033 vs 0.985 ±0.078,5.452 ±0.557 vs 10.145 ±2.545,均P < 0.01);S组PASMCs OD值上调,凋亡指数明显下调(1.143 ±0.033 vs 1.295 ±0.039,5.452 ±0.557 vs 3.093 ±0.409,均P < 0.01);A组PASMCs的OD值下降,凋亡指数升高(1.143 ±0.033 vs 0.347 ±0.067,5.452 ±0.557 vs 25.753 ±1.262,均P < 0.01);SA组PASMCs OD值上调,凋亡指数下调(1.143 ±0.033 vs 1.685 ±0.100,5.452 ±0.557 vs 1.700 ±0.095,均P < 0.01)。结论:低氧对PASMCs增殖和凋亡的调控与MAPK信号通路有关。  相似文献   

20.
目的:观察脑内远位触液神经元内p-p38丝裂原活化蛋白激酶(MAPK)的分布及其在噪声应激时的表达。方法:用霍乱毒素亚单位B与辣根过氧化物酶复合物(CB-HRP)标记和免疫组织化学相结合的双重标记技术.观察SD大鼠脑实质内远位触液神经元中p-p38MAPK的分布:进一步制作噪声应激动物模型,观察噪声应激后该类神经元中p-p38MAPK的表达变化。结果:在脑干的特定部位恒定出现被CB-HRP标记的两组神经细胞簇,其他脑区未见CB-HRP标记神经细胞簇。不予应激刺激,该细胞簇内仅有个别神经元见有CB-HRP/p—p38MAPK;噪声应激刺激1d时,上述特定部位细胞簇的CB-HRP/p-p38MAPK双重标记神经元数目没有明显变化;噪音应激刺激5d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激10d时CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激20d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.01):结论:在脑干特定部位恒定存在的两组被CBHRP标记的细胞团为远位触液神经元,其中少数触液神经元有p-p38MAPK表达,且当给予动物噪声应激刺激时,p-p38MAPK免疫阳性神经元和CB-HRP/p—p38MAPK双重标记神经元数量显著增加,提示脑实质内的这种远位触液神经元中的P—p38MAPK可能参与了机体对噪声应激的信息传递或调控,其作用随应激天数增加而日趋增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号