首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

2.
Aim Biodiversity patterns along altitudinal gradients are less studied in aquatic than terrestrial systems, even though aquatic sites provide a more homogeneous environment independent of moisture constraints. We studied the altitudinal species richness pattern for planktonic rotifers in freshwater lakes and identified the environmental predictors for which altitude is a proxy. Location Two hundred and eighteen lakes of Trentino–South Tyrol (Italy) in the eastern Alps; lakes covered 98% (range 65–2960 m above sea level) of the altitudinal gradient in the Alps. Methods We performed: (1) linear regression between species richness and altitude to evaluate the general pattern, (2) multiple linear regression between species richness and environmental predictors excluding altitude to identify the most important predictors, and (3) linear regression between the residuals of the best model of step (2) and altitude to investigate any additional explanatory power of altitude. Selection of environmental predictors was based on limnological importance and non‐parametric Spearman correlations. We applied ordinary least squares regression, generalized linear, and generalized least squares modelling to select the most statistically appropriate model. Results Rotifer species richness showed a monotonic decrease with altitude independent of scale effects. Species richness could be explained (R2= 51%) by lake area as a proxy for habitat diversity, reactive silica and total phosphorus as proxies for productivity, water temperature as a proxy for energy, nitrate as a proxy for human influence and north–south and east–west directions as covariates. These predictors completely accounted for the species richness–altitude pattern, and altitude had no additional effect on species richness. Main conclusions The linear decrease of species richness along the altitudinal gradient was related to the interplay of habitat diversity, productivity, heat content and human influence. These factors are the same in terrestrial and aquatic habitats, but the greater environmental stability of aquatic systems seems to favour a linear pattern.  相似文献   

3.
Aim Organisms smaller than 2 mm appear not to follow the spatial patterns in richness and diversity commonly observed in macroscopic organisms. We describe spatial patterns in species diversity in a group of microscopic organisms, bdelloid rotifers, living in moss and lichen patches, in order to test the hypotheses of no relationship between species richness and composition and spatial gradients, suggested by previously published patterns in microscopic organisms. Location Moss and lichen patches as habitats for bdelloids, on high‐elevation peaks at altitudes between 2984 and 4527 m a.s.l. across the Italian, French and Swiss Alps, with distances among sample sites ranging from 1 m to 420 km, in comparison with lower‐elevation samples at altitudes from 850 to 1810 m a.s.l. Methods We sampled species assemblages of bdelloid rotifers living in isolated moss and lichen patches in 47 sites. We described the observed α, β and γ diversities; the heterogeneity of species assemblages; and the estimated number of species (incidence‐based coverage estimator). Patterns in species distribution were analysed at three different levels: (1) habitat, comparing species richness on moss and lichen substrates, testing differences in α diversity and heterogeneity (anova ), species composition (analysis of similarities test), and γ diversity (rarefaction curves); (2) altitude, comparing the observed richness with previously published data from locations well below 2000 m; and (3) distances between sites, correlating the matrix of Jaccard dissimilarities and the matrix of geographical distances with a Mantel test. Results Both species richness and species composition of bdelloid rotifers differed significantly between mosses and lichens at high elevations, but no difference was found in the heterogeneity of species assemblages. Alpha diversity was significantly lower at high‐elevation than at low‐elevation sites, but the estimated number of species was not reduced when compared with sites at low elevations. Geographical distance between sites had no effect on species composition in either mosses or lichens. The distribution of species was highly heterogeneous, with a low similarity among assemblages. Main conclusions As expected, bdelloids appear to occupy habitats selectively. The altitudinal gradient in species richness for bdelloid rotifers is limited to a decrease in α diversity only; such a decrease is not caused by a lower number of species (low γ diversity) being able to tolerate harsh conditions, and high‐altitude species are not a subset of species living at lower elevations. The observed values of α, β and γ diversity at high altitudes in the Alps are compatible with the scenario of a very low number of available propagules because of the low density of patches of favourable habitat. Our results suggest that the geographical distribution of animals, and therefore biodiversity patterns, may be strongly influenced by animal size, as small organisms such as bdelloids appear to show spatial patterns that differ from those known in larger animals. Differences in body size should be taken into account carefully in future studies of biodiversity patterns.  相似文献   

4.
5.
Abstract. Spatial distribution patterns of alien plant species were compared with those of native species on a windward slope of Mt. Haleakala (3055 m). Oceanic islands are considered susceptible to biological invasion, and this study numerically tested this circumstantial evidence with the following questions: Are all habitats equally susceptible; and, do successful invaders have wider realized niches than natives? The mountain slope consists of three distinct altitudinal bioclimatic zones (hot moist lowland, wet montane cloud, and cool arid high-altitude zones). Ordination indicated that alien species' ranges and population expansions were clustered in the lowland and high-altitude zones. The lowland zone had been subjected to natural canopy dieback, and the high-altitude zone to grazing by domestic and feral ungulates. By contrast, the montane cloud forest was relatively intact in terms of number and cover of native species. Thus, susceptibility to alien invasion clearly differed among zones, and the primary causes seemed to be the obvious disturbance factors. The mean ecological range along the altitude-rainfall gradient was significantly (P < 0.05) greater for native than for alien species in most life-form groups. The reasons for the greater number of climate generalists among the natives vs. the range-restricted aliens appear to be related to: (1) the pre-alien condition with a depauperate flora which allowed for ‘ecological release’ of successful native colonizers, and (2) the climatic pre-adaptation of alien invaders which restricts them from penetrating over a broader spectrum of climatic zones in a floristic matrix subjected to increasing interspecific competition.  相似文献   

6.
The altitudinal distribution of mountain birds has recently changed following different patterns in space and time, probably due to the variability of the ongoing environmental processes. Although several studies have highlighted the effect of climate warming in affecting birds altitudinal responses, in the Alps, land abandonment and the consequential forest regrowth may have played a fundamental role.We applied the response curve shape method to investigate changes in the altitudinal distribution of breeding birds over a ten-year period in two different alpine areas (Central and Western Italian Alps) and we performed a log-linear analysis to depict the differential responses of species grouped according to their breeding habitat preferences.The patterns of change remarkably differed according to species ecological traits and between mountain areas. We did not highlight clear altitudinal changes in the Central Alps for any ecological groups, while in the Western Alps, woodland birds showed an expansion pattern and grassland birds suffered a retraction pattern. Since the two alpine areas did not suffer a significant temperature increase, but experienced different woodland cover dynamics, we believe that forest regrowth played a key role in shaping the different bird altitudinal responses between the two sites.Our findings illustrate the effect of ecological traits in shaping altitudinal changes and the role of local environmental factors in affecting spatial variation. Particularly, we strongly suggest considering woodland cover expansion as a key driver of bird altitudinal changes in alpine areas.  相似文献   

7.
Local adaptation in alpine plants has been demonstrated across wide altitudinal gradients, but has rarely been examined across the alpine‐to‐montane transition that often encompasses only a few hundred metres. Here we characterize morphological variation in leaf and floral characteristics of the trigger plant Stylidium armeria along a narrow altitudinal gradient in the Bogong High Plains in Victoria. Across this gradient, which encompasses the high‐elevation limit of this species, linear changes were found for floral scape height, leaf length and flower number. All these traits decreased with increasing altitude, whereas the frequency of abnormal flowers increased. When plants were grown in a common garden environment, an altitudinal pattern for flower abnormalities was no longer detected. However, altitudinal patterns for leaf length and scape height were maintained, albeit weaker than in the field. This indicates heritable variation for these morphological traits; the altitudinal patterns are likely to reflect the effects of selection by environmental factors that vary with altitude. Selection pressures remain to be identified but have generated both cogradient and countergradient patterns of variation.  相似文献   

8.
Zooplankton species have evolved several adaptive strategies to minimize damage caused by exposure to solar ultraviolet radiation, but the environmental conditions favoring one strategy or another are not yet fully understood. Here, I quantified the concentration of photoprotective compounds (carotenoids and mycosporine-like amino acids or MAAs) and assessed the photorepair activity (photolyase assay) in populations of the calanoid copepod, Arctodiaptomus jurisowitchi and the cladocerans, Daphnia himalaya and D. longispina, from five high altitude lakes located in the Himalayan Region (Khumbu Valley, Nepal) between 4890 and 5440 m above sea level. The concentration and diversity of MAAs were low in copepods, as well as in seston samples. Significant differences in the concentration of MAAs among the five copepod populations were largely explained (96%) by the lake depth refuge (i.e., the fraction of the water column to which 1% of the surface UVR at 320 nm penetrates). Concentrations of carotenoids (mostly free astaxanthin) in copepods were among the highest reported in the literature. Similar to MAAs, the carotenoid concentration was inversely related to the lake depth refuge. The lowest concentration of photoprotective compounds in copepods was observed in a turbid glacier lake, whereas the highest was found in a shallow water body dominated by a benthic mat of filamentous green algae. Except for the presence of melanin in D. himalaya, no other photoprotective compounds were found in cladocerans. The assay of photolyase activity in A. jurisowitchi and D. himalaya suggested the absence of a photorepair mechanism. The results of this study indicate that the copepod populations from this relatively pristine alpine region rely mainly on the accumulation of carotenoids to minimize damage by UV radiation, a pattern that strongly contrasts with what is known for copepods from other alpine lakes, for instance, in the Alps. I hypothesize that this difference is attributed to nitrogen limitation of the MAA synthesis in phytoplankton from remote Himalayan lakes.  相似文献   

9.
Three species of Corixidae (Hemiptera : Heteroptera) were studied in thirty montane, sub-alpine, and alpine ponds in Western Colorado. Callicorixa audeni Hung, had the widest altitudinal range (2800-3400 m). Cenocorixa bifida Hung, was most common in montane ponds. Arctocorisa lawsoni Hung, was found only above 3100 m. C. audeni was significantly associated with C. bifida and A. lawsoni. Habitat selection was studied in two montane (2900 m) and one alpine (3480 m) pond. C. audeni utilized both mud and emergent sedges as perching and feeding sites, occurring more frequently in the sedges in the montane ponds. C. bifida was confined to the mud. In the alpine pond, A. lawsoni was most abundant on the mud; C. audeni occurred equally on the mud and in the sedges. All three species preferred shallow water (less than 0·5 m). A. lawsoni occupied deeper water more often than C. audeni. In substrate selection experiments C. audeni occupied emergent sedges more than C. bifida, confirming field observations. C. bifida occurred in sedges in the aquaria, but not in the montane ponds, suggesting that an interspecific interaction may be excluding C. bifida from the sedges in nature.  相似文献   

10.
We use an extensive historical data set on bumble bee host choice collected almost 50 years ago by L. W. Macior (Melanderia 15:1–59, 1974) to examine how resource partitioning by bumble bees varies over a 2,700-m altitudinal gradient at four hierarchical scales: individual, colony, species and community. Bumble bee behavior, resource overlap between castes, and plant-bumble bee networks change with altitude in accordance with tightening temporal constraints on flowering and colony growth in alpine habitats. Individual bees were more likely to collect pollen from multiple sources at high altitude. Between-caste foraging niche overlap increased with altitude. Similarly, alpine forager networks were more highly nested than either subalpine or montane networks due to increased asymmetric specialization. However, interspecific resource partitioning showed a more complex spatial pattern with low niche overlap at intermediate altitude (subalpine) compared to montane (disturbed) and alpine (unproductive) sites. Results suggest that spatial variation in interspecific resource partitioning is driven by a shift in the behavior of long-tongued bumble bees. Long-tongued bumble bees specialized in the subalpine but generalized in montane and alpine zones. Our reanalysis of Macior’s data shows that bumble bee behavior varies substantially with altitude influencing plant-bumble bee interaction networks. Results imply that pollination services to alpine host plants will change dramatically as subalpine species with unique foraging strategies move upward under global warming.  相似文献   

11.
《Plant Ecology & Diversity》2013,6(3-4):447-455
Background: High-altitude ecosystems in the Alps have experienced severe environmental changes over the past decades, such as strong warming and increasing numbers of visitors and grazers. Few studies have followed the effects of such changes on the alpine flora over a period longer than a few decades. The summit of Piz Linard (3410 m, south-eastern Switzerland) is the oldest site in the Alps whose flora has been recorded, on average every 20 years since the Little Ice Age (1835).

Aims: We re-surveyed the summit flora of Piz Linard to trace its floristic changes and identify their patterns and possible drivers.

Methods: We mapped each species' highest location, distribution and abundance in the uppermost 30 m of the Piz Linard summit in 2011, and compared species composition and species’ altitudinal distribution over time.

Results: Species richness increased at an accelerated rate since 1992 and rose from 12 to 16 species since the previous record in 2003. Most already present species increased in abundance and colonised new areas of the summit, while new arrivals mainly established at sites with already high species richness. Species appeared after 1992 differed from species already present previously by having had lower maximum altitudes elsewhere in south-eastern Switzerland.

Conclusions: Temporal and spatial patterns of colonisations and former altitudinal ranges of species all point to climate warming as the principal driver of floristic change on Piz Linard.  相似文献   

12.
Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m2/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.  相似文献   

13.
Arbuscular mycorrhizal (AM) fungal spore communities and distribution patterns were surveyed in montane scrub grassland, alpine steppe, and alpine meadow sites at altitudes ranging from 3,500 to 5,200 m a.s.l. on the Tibetan Plateau. Thirty-two representative soil samples were collected from the root zone of the dominant and common plant species in late May 2004. Twenty-three AM fungal species representing six genera (Acaulospora, Entrophospora, Glomus, Pacispora, Paraglomus, and Scutellospora) were detected and species richness varied from 5.3 ± 0.8 to 10.5 ± 2.5 per site. Some AM fungal species were restricted to one vegetation type and Glomus mosseae, Glomus intraradices, and Scutellospora calospora were detected in all three vegetation types. Glomus species were found to be the most frequent and abundant in all three vegetation types. Acaulospora occurred mostly in the alpine steppe and alpine meadow. Scutellospora occurred mostly in montane scrub grassland. At the species level, Glomus mosseae was dominant in the montane scrub, Acaulospora laevis and Pacispora scintillans were dominant in the alpine steppe, and Acaulospora laevis, Pacispora scintillans, and Glomus claroideum dominated the alpine meadow. It was evident from the distribution pattern of AM fungi in the different vegetation types that the abundance and diversity of AM fungal species were lowest in the montane scrub grassland than the other two plant communities. Climatic conditions, especially temperatures, and intensity of land use may be the most important factors influencing the AM fungal community.  相似文献   

14.
Abstract. Altitudinal and latitudinal distribution limits of trees are mainly controlled by temperature. Therefore climate warming is expected to induce upslope or poleward migrations. In the Swiss Central Alps, summers in the period 1982-1991 were on average 0.8 °C warmer than those of the period 30 yr before. We investigated whether populations of conifers at the montane Pinus sylvestris-Pinus cembra ecocline exhibit demographic trends in response to that warming. We found no evidence for this. Young seedlings of Pinus sylvestris, the species which is expected to expand its range upward in a warmer climate, were virtually absent from all sites, whereas large fractions of Pinus cembra populations were observed in the seedling and juvenile categories even below the present lower distribution limit of adult trees. This suggests that there are no major altitudinal shifts in response to the recent sequence of warmer summers. Germination and seedling survival trials with Pinus sylvestris suggest that temperature per se would not exclude this species even from establishing at the current treeline in the Swiss Central Alps. Similar results were found at the polar treeline. Phytotron tests of seedling survival showed much less drought resistance in Pinus sylvestris than in Pinus cembra which is in contrast to their phytogeographic distributions. Thus, the montane pine ecocline in the Swiss Central Alps seems to be stabilized by species interactions and may not be directly responsive to moderate climatic change, which needs to be taken into account in predictive attempts.  相似文献   

15.
Aim This analysis of caterpillar (Lepidoptera) beta‐diversity between tropical lowlands and highlands attempts to separate the effects of between‐site (1) turnover of herbivore species on particular host plants, (2) changes in host use by herbivores, and (3) turnover of plant species on changes in herbivore assemblages. Location Two rain forest areas 130 km and 1700 altitudinal metres apart were studied in Papua New Guinea: one in the lowlands (100 m a.s.l.) on the northern coast of the island and one in the central New Guinean cordillera at 1800 m a.s.l. Methods The analysis is based on caterpillar feeding records obtained by quantitative sampling and rearing of caterpillars from four Ficus species studied in the mountains and 21 Ficus species and 62 plant species from other genera and families studied in the lowlands, including three Ficus species studied in both areas. Results Only 17% of species feeding on Ficus in the highlands also occurred in the lowlands. These species represented 1–46% of individuals in caterpillar assemblages on particular Ficus hosts. Widespread species included both Ficus specialists and generalists feeding on numerous plant families. Some of the Ficus specialists changed their preferred host species with altitude. High species turnover was not explained by changes in the species composition of host plants with altitude as lowland and montane assemblages feeding on the same Ficus species showed high turnover. Despite the rarity of widespread caterpillars, the lowland and montane Ficus assemblages were remarkably similar in their dominance structure, species richness, host specificity, generic composition and familial composition. Main conclusions Ficus‐feeding Lepidoptera assemblages between tropical lowlands and highlands are characterized by substantial species turnover not explained by altitudinal changes in the composition of the vegetation. Further, species‐rich plant genera can support caterpillar assemblages with relatively low beta‐diversity compared with species‐poor genera as caterpillars can switch their host preferences from one congeneric host species to another along an altitudinal gradient. Closely related plant species can thus represent a broad, continuously distributed resource along such gradients.  相似文献   

16.
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species'' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.  相似文献   

17.
We address the question to which degree ridge habitats in tropical montane forests contribute to overall plant diversity by analysing patterns of pteridophyte (i.e. lycophytes and ferns) assemblages on ridges and slopes in three montane forest sites near Podocarpus National Park, Ecuador. The analyses, which involved 158 pteridophyte species (110 terrestrial, 96 epiphytic, 48 both) from 28 plots of 20 m × 20 m (or an equivalent of 400 m2), showed that more species were typical of one of the three study sites than of one of the two habitats (ridge/slope). As found in previous studies, alpha diversity on ridges was lower than on slopes, accounted for by the absence of numerous species that are found on slopes. Pteridophyte assemblages on ridges were more similar across study sites than those on slopes. Thus, unlike the structurally comparable (i.e. stunted, open) Amazonian forests, the studied montane ridge forests harbour fairly homogenous pteridophytes assemblages with very few specialised species. Our study implies that slope forests are of higher conservation priority for pteridophytes in the study region than ridge habitats. However, comparative studies are needed because other geographical regions and other groups of organisms may not share this pattern. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The results of a study of littoral chironomid communities from 89 lakes in the Alps are presented. The lakes are located on the northern and southern sides of the Alps from the western Bernese to the eastern Julian Alps. Due to the different origins of the data set here considered, different sampling years and sampling methodologies were adopted. All of the lakes were sampled during the ice-free season, but 79/89 lakes were sampled mainly in autumn 2000, while for a few of them the sample dated back to 1996 or the early 90s. Samples were taken by kicking the different substrata or a stretch of lakeshore (10–30 m) for at least 2–5 min with a standard net and were then preserved in alcohol. Larvae and pupal exuviae were sampled by skimming the lake surface with the same net, to extend identification to species level. Notwithstanding the large altitudinal gradient, almost all of the lakes are situated above the timberline, and show a wide range of morphological (depth, watershed and lake area) and chemical characteristics. Chironomids were the most abundant insects represented in these lakes, with highest abundances at pH between 6.0 and 7.5. In particular, Orthocladiinae and Chironominae were the two subfamilies with the widest distribution. Altitude and temperature played an important role in determining their distribution, the higher altitudes were dominated by the former, whereas the latter were more numerous in lower lakes. The prevalence of Orthocladiinae and Tanytarsini at high altitudes was regarded as a general pattern of taxonomic composition in harsh climatic areas. A reverse condition occurred only in the Julian Alps, where Tanytarsini dominate, followed by Tanypodinae and rare Orthocladiinae. Although our results demonstrated that the composition of chironomid assemblages was also determined by pH, the pattern was unbalanced. Due to the fact that no cases of strong water acidification were present, taxa restricted to very low pH were poorly represented (only three taxa—Limnophyes, Endochironomus and Orthocladius (O.) spp.) compared with circumneutral (8) and alkaline (14) taxa, which occurred in slightly acid and non-acidified soft water lakes. As regard conductivity and altitude, we found that almost all the taxa present at higher pH were contemporary present at conductivity higher than 100 μeq l−1 and altitude lower than 2100 m a.s.l. At species level, Pseudodiamesa branickii, Corynoneura arctica, Heterotrissocladius marcidus and Paratanytarsus austriacus resulted to be the most ubiquitous and abundant species in the Alps. When the west to east distribution of taxa was taken into account, Chironomini (particularly the genera Chironomus and Dicrotendipes) and Tanypodinae (Larsia and Paramerina) were more typical of the eastern lakes (JA). They may be better indicators of more alkaline waters. Assembling all the existing data and presenting a comprehensive panorama of lake-littoral chironomid taxa of the Alps was one of the aims of this paper. Further monitoring, but also harmonization of the sampling methodologies and taxonomical identification including inter-calibration exercises among laboratories are recommended, to provide reliable basis and more knowledge for future studies of comparative biogeography, and to preserve these environments where global climatic changes may cause abrupt shifts in the faunal assemblages with a loss of taxa typical of these mountainous areas.  相似文献   

19.
Nematode species are widely tolerant of environmental conditions and disperse passively. Therefore, the species richness distribution in this group might largely depend on the topological distribution of the habitats and main aerial and aquatic dispersal pathways connecting them. If so, the nematode species richness distributions may serve as null models for evaluating that of other groups more affected by environmental gradients. We investigated this hypothesis in lakes across an altitudinal gradient in the Pyrenees. We compared the altitudinal distribution, environmental tolerance, and species richness, of nematodes with that of three other invertebrate groups collected during the same sampling: oligochaetes, chironomids, and nonchironomid insects. We tested the altitudinal bias in distributions with t‐tests and the significance of narrow‐ranging altitudinal distributions with randomizations. We compared results between groups with Fisher's exact tests. We then explored the influence of environmental factors on species assemblages in all groups with redundancy analysis (RDA), using 28 environmental variables. And, finally, we analyzed species richness patterns across altitude with simple linear and quadratic regressions. Nematode species were rarely biased from random distributions (5% of species) in contrast with other groups (35%, 47%, and 50%, respectively). The altitudinal bias most often shifted toward low altitudes (85% of biased species). Nematodes showed a lower portion of narrow‐ranging species than any other group, and differed significantly from nonchironomid insects (10% and 43%, respectively). Environmental variables barely explained nematode assemblages (RDA adjusted R2 = 0.02), in contrast with other groups (0.13, 0.19 and 0.24). Despite these substantial differences in the response to environmental factors, species richness across altitude was unimodal, peaking at mid elevations, in all groups. This similarity indicates that the spatial distribution of lakes across altitude is a primary driver of invertebrate richness. Provided that nematodes are ubiquitous, their distribution offers potential null models to investigate species richness across environmental gradients in other ecosystem types and biogeographic regions.  相似文献   

20.
《Plant Ecology & Diversity》2013,6(3-4):423-433
Background : Intraspecific functional variability (IFV) along altitudinal gradients is a powerful proxy to infer the responses of plants to abrupt environmental changes. We envisage that IFV shows distinctive patterns in tropical and extratropical alpine regions.

Aims : To characterise the patterns and explore the origin of IFV in a tropical alpine species in a context of upward range extension.

Methods : We examined variations in a series of plant functional traits in Lasiocephalus ovatus, inside and outside a nurse plant along a 600 m altitudinal gradient in the Ecuadorian Andes, and we studied its genetic variability.

Results : More conservative traits were developed at higher elevation, in contrast to extratropical alpine plants, which commonly develop opportunistic traits in response to late snowmelt close to their upper altitudinal limit. The presence of nurse cushions did not alter this trend. Increasing genetic distance along the gradient suggested that IFV might be partly genetically induced.

Conclusions : Our data combined with existing literature in tropical alpine environments lead the way to a stimulating scientific challenge: determining if patterns of plant altitudinal distribution in tropical alpine areas in response to climate change are predictable from patterns described in extratropical alpine areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号