首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Our study examined the influence of elevated ozone levels on the growth and mycorrhizal colonization of two populations of Elymus glaucus L. (blue wildrye). We hypothesized that ozone would reduce carbon availability to the plants, particularly below ground, and would affect mycorrhizal colonization. Because of the wide geographic range of E. glaucus, two populations of plants were selected from areas of contrasting ozone histories to examine intraspecies variation in response to ozone. Two populations of E. glaucus (southern California versus northern California) exposed in a factorial experiment involving ozone, mycorrhizal inoculation with Glomus intraradices Schenck and Smith, and plant source population. Ozone had a subtle effect on leaf area and number of tillers but did not affect overall root:shoot ratio in either population. The impact of ozone on above-ground growth characteristics was most pronounced in the southern population that came from a high-ozone environment, while below-ground responses such as reduced arbuscular colonization was most pronounced in the northern population which originated in a low-ozone environment. Further analysis of soil characteristics from the northern population of plants revealed a significant reduction in active soil bacterial biomass and an increase in total fungi per gram dry weight soil, suggesting a possible role for ozone in altering soil processes. Whether or not population differences in response to ozone were due to genetic shifts resulting from prior ozone remains to be determined. However, these subtle but important differences in population response to ozone above- and below-ground have significant implications in any attempt to generalize plant response, even within a species. Future research efforts need to include better characterization of intraspecific variation in response to ozone as well as possible adaptive strategies that may result from chronic ozone exposure.  相似文献   

3.
This paper reports twoGlomus spp. isolated from rhizosphere soil in a bentgrass nursery of a golf course in Hyogo Prefecture, western Japan. One was identified asG. etunicatum, new to Japan, while the other remained unidentified because of lack of information.  相似文献   

4.
The effect of aluminium (Al) on phosphoinositide-specific phospholipase C (PLC) and lipid kinase activities was examined in a cellular suspension of coffee. Two main effects were seen when cells were treated with AlCl3. In periods as short as 1 minute, Al-exposed cells increased the activity of PLC and IP3 formation up to two fold. Over longer periods PLC activity was inhibited by more than 50%. The activity of phosphatidylinositol 4-kinase (Pl 4-K), phosphatidylinositol phosphate 5-kinase (PIP 5-K) and diacylglycerol kinase increased when cells were incubated in the presence of different concentrations of AlCl3. The present study reports for the first time that Al may have different effects on the Pl-signaling pathway depending on the time of exposure. Our results strongly support the hypothesis that Al disrupts the metabolism of membrane phospholipids regulating not only PLC but also other enzymes that have key roles in signal-transduction pathways.  相似文献   

5.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

6.
Gas exchange and chlorophyll a fluorescence measurements of expanding and adult leaves of four plant species were compared under field conditions. The pioneer species (PS) tended to have thinner leaves with lower nitrogen content and higher stomatal density compared to forest species (FS). Expanding leaves featured lower photosynthetic pigment contents and gas exchange capacity than adult leaves consistent with an immature photosynthetic apparatus. At the time of maximum irradiance, sun-exposed leaves of both PS and FS showed alteration of initial, variable, and maximum fluorescence as well as their ratios indicating photoinhibition. However, leaves recovered to some extent at predawn, suggesting the activation of photoprotective mechanisms. Sun-exposed leaves had comparable responses to high irradiance.  相似文献   

7.
Forest edges created by scattered-patch clear-cutting have become common in tropical montane cloud forests in the highlands of Chiapas, Mexico. It was hypothesised that forest edges may influence regeneration of oak species, which are canopy dominants in these forests, by affecting the activities of small mammal species. Acorns of different oak species varying in germination timing were offered to predators and/or dispersers at different positions along replicated forest edges during 2 consecutive years. We investigated the effects of (1) edge type (hard and soft), (2) distance from the edge (0, 15, 30, 45 and 60 m inside forest fragments) and (3) oak species, on the rate of acorn removal mainly by small mammals. During a non-masting year, acorn removal was affected by the interaction of edge type and distance from the edge (P<0.05), with acorn removal being highest near hard edges compared to adjacent forest interiors. As predicted, acorn removal was greater along soft (100%) than along hard edges (82%), but this pattern was recorded only during the non-masting year. This study partly supports previous studies of rodents preferentially consuming acorns with early germination rather than acorns exhibiting dormancy, however these patterns may change with variation in acorn abundance. These results suggest that patch clear-cutting affects regeneration processes within forest fragments by influencing the activities of small mammals, but the nature of this effect also depends on acorn abundance and the characteristics of the forest edge created.  相似文献   

8.
Dirk Gansert 《Plant and Soil》1994,167(1):109-119
Root respiration of 10-year-old beech saplings (Fagus sylvatica L.) grown in the understorey (UND) and in a natural gap (GAP) of a mature beech forest in the Solling mountains, FRG, was investigated from April until December, 1990. Respiration rates of fine, medium and coarse roots were measured in situ by a PC-controlled cuvette system. Fine root respiration rates were in the range of 0.5–9.8 nmol CO2 gDW–1 s–1 at both sites, but respiration rates of UND saplings were higher, compared to those of GAP saplings. The dependence of respiratory activity on soil temperature proved to be highly significant (p<0.001) for both plots, following a quasi-Arrhenius type curve. Fine root respiration rates of UND saplings were highly significantly, negatively correlated with the water content of the attached organic material, whereas respiration rates of GAP saplings did not show such a correlation. Further, a significant correlation (p<0.01) between mycorrhizal biomass and respiration rate was detected at the UND site, but not at the GAP site. Medium and coarse root respiration rates were very similar and no significant differences between the two sites were detected. Maximum respiration rates of 3.1 nmol CO2 gDW–1 s–1 were reached in the middle of July. Due to low light intensities in the under storey, daily net CO2 assimilation rates of UND saplings were much smaller than those of GAP saplings. At both sites, net CO2 assimilation rates varied more than respiration rates and thus the carbon balance of beech saplings was more affected by the rate of carbon fixation than by the rate of respiratory carbon loss.  相似文献   

9.
The effect of soil waterlogging and nutrient supply on plant nutrient accumulation and distribution was investigated for two genotypes of winter wheat (Triticum aestivum L.) differing in waterlogging resistance, Bayles and Savannah. Plants were grown in waterlogged or drained sand and fertilized with half-strength or full-strength Hoagland's solution.Waterlogging reduced the concentrations of N, P, K, Mg, and Zn in leaves and stems and increased the concentrations of those elements in the root system. The effects were greater for waterlogging-sensitive Bayles than for waterlogging-resistant Savannah. Higher concentrations of Fe and Mn were found in waterlogged plants compared to the control plants for sensitive Bayles. Waterlogging increased the proportion of N and Zn in the root system and decreased that of K in stems for Bayles. The proportion of Fe increased in leaves and stems for Bayles and Savannah under waterlogged conditions, but to a greater extent for Bayles. Doubling the concentrations of all major and minor nutrient elements supplied to the waterlogged rooting medium improved plant nutrient status and enhanced plant dry matter production.  相似文献   

10.
The effects of the interaction between Pratylenchus vulnus and the endomycorrhizal fungus Glomus intraradices on growth and nutrition of Santa Lucia 64 cherry rootstock was studied under microplot conditions during one growing season. Fresh top weight, and stem diameter of mycorrhizal plants and high P treatments with and without P. vulnus were significantly higher than those of non-mycorrhizal plants. The lowest shoot length and fresh root weights were recorded in nematode inoculated plants in low P soil. Mycorrhizal infection did not affect the number of nematodes per gram of root in plants infected with P. vulnus. In the presence of the nematode, internal spore production by G. intraradices was significantly reduced. No nutrient deficiencies were detected through foliar analysis, although low levels of Ca, Mn and Fe were detected in nematode treatments. Mycorrhizal plants achieved the highest values for N, P, S, Fe, and Zn, whereas high P treatments increased absorption of Ca and Mn. Early mycorrhizal infection of Santa Lucia 64 cherry rootstock by G. intraradices confers increased growth capacity in the presence of P. vulnus.  相似文献   

11.
Four Musa cultivars, differing in nematode susceptibility, were selected to study their relative mycorrhizal dependency and to study the interaction between the arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and two migratory endoparasitic nematodes, Radopholus similis and Pratylenchus coffeae. Mycorrhization with G. mosseae resulted in significantly better plant growth, even in the presence of R. similis and P. coffeae. No differences in relative mycorrhizal dependency (RMD) were observed among the four cultivars. G. mosseae suppressed nematode population build-up in Grande Naine and Pisang Jari Buaya. Only in the case of R. similis (Indonesian population) in Pisang Jari Buaya, no significant suppression was observed. In the case of P. coffeae, the AMF reduced the damage in the roots, caused by the nematodes. For R. similis, no reduction of damage was observed. In all, except one experiment, the frequency of the mycorrhizal colonisation was negatively affected by the nematodes.  相似文献   

12.
Proton net efflux of wheat (Triticum aestivum L.) roots growing in sand culture or hydroponics was determined by measuring the pH values of the solution surrounding the roots by pH microelectrodes, by base titration and by color changes of a pH indicator in solid nutrient media. The proton net efflux was dependent on light, aeration, and source of nitrogen (NH 4 + , NO 3 ? ). Ammonium ions caused the highest proton efflux, whereas nitrate ions decreased the proton efflux. Iron deficiency had no significant effect on proton efflux. Replacement of ammonium by nitrate inhibited proton efflux, whereas the reverse enhanced proton extrusion. A lag period between changes in plant environment and proton efflux was observed. The proton net efflux occurred at the basal portion of the roots but not in the root tips or at the elongation zone. Under optimal conditions, proton efflux capacity reached a maximum value of 5.7 μmole H+ g?1 fresh weight h?1 with an average (between different measurements) of 3.4 μmole H+ g?1 fresh wth?1 whereas the pH value decreased to 3.2–3.7 and reached a minimal value of 2.9. Inhibition of ATPase activity by orthovanadate inhibited proton efflux. The results indicate that proton efflux in wheat roots is ammonium ion and light dependent and probably governed by ATPase activity.  相似文献   

13.
We compared the spatial distribution of stem cankers on the canopy tree Ocotea whitei (Lauraceae) in a 20-ha plot on Barro Colorado Island, Panama, with spatial and temporal patterns of mortality in this host over the previous decade. The cankers occur both on adult and juvenile individuals, aothough juveniles are much more likely the adults to show symptoms. Disease incidence is host-density dependent, and both the presence of the disease and host mortality are more likely close to than far from a conspecific adult, which resulted in a net spatial shift of the juvenile population away from conspecific adults through time. Disease incidence is lower than expected among juveniles of O. whitei growing near to adults of the non-susceptible canopy tree Beilschmiedia pendula. The coincidence of spatial patterns of canker incidence and host mortality suggest a role for the disease in regulating host spatial distribution, in agreement with predictions of the Janzen-Connell hypothesis.  相似文献   

14.
Aga E  Bekele E  Bryngelsson T 《Genetica》2005,124(2-3):213-221
Genetic variation of forest coffee trees (Coffea arabica L.) from four regions of Ethiopia was investigated using inter-simple sequence repeat (ISSR) markers. A total of 160 individuals representing 16 populations were sampled. Eleven ISSR primers amplified a total of 123 fragments of which 31 fragments (25%) were polymorphic. Estimate of total gene diversity (H T), and the coefficient of genetic differentiation (G ST) were 0.37 and 0.81, respectively. This indicates that most of the variability is between populations than within populations. The partitioning of genetic variation into within and between populations based on Shannon’s information index also revealed more differentiation between populations (0.80) than within populations (0.20). In the phenogram most of the coffee tree samples were clustered on the basis of their regions of origin but failed to cluster according to their respective populations, which could be attributed to the presence of substantial gene flow between adjacent populations in each region assisted by man in the process of transplantation or by wild animals such as monkeys, which eat the berries and defecate the seeds elsewhere. On the other hand, the inter-regional clustering of some coffee tree samples from Bale and Jimma regions could be due to the transport of coffee seeds across regions and their subsequent planting. Although ISSR markers detected lower polymorphic loci than previously reported results with random amplified polymorphic DNA (RAPD) markers on the same materials, it can be used as an alternative method for molecular characterization of C. arabica populations. The results may provide information to select sites for in situ conservation.  相似文献   

15.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In plants the ureides allantoin (ALN) and allantoic acid (ALA) are formed in purine metabolism, and in some legumes both compounds play an important role as nitrogen (N) sources. In coffee plants, ALN and ALA are catabolites of caffeine degradation. Caffeine is found throughout the coffee plant and in some parts this alkaloid can accumulate up to 4% dry basis. Therefore, caffeine degradation via ureides may make an important contribution to N metabolism of the plant. Using coffee cell suspension as a model we investigated the contribution of ALN as a source of N in coffee. ALN was incorporated in the liquid medium and after 20 d of cultivation, cell mass, NO(3), NH(4), amino acids, soluble proteins, ALN and caffeine were determined in the cells. The activity of glutamine synthetase was also studied. The results showed that despite being taken up by cells ALN does not contribute significantly as a source of N in coffee cells. Compared with mineral N sources, cells grown with ALN-N accumulated much less mass. The inclusion of ALN in the medium caused significant alterations in the content of some N compounds indicating a stress condition.  相似文献   

17.
Among chemicals that are widely spread both in terrestrial and aquatic ecosystems, benzo[a]pyrene is a major source of concern. However, little is known about its adverse effects on plants, as well as about the role of mycorrhization in protection of plant grown in benzo[a]pyrene-polluted conditions. Hence, to contribute to a better understanding of the adverse effects of polycyclic aromatic hydrocarbons on the partners of mycorrhizal symbiotic association, benzo[a]pyrene-induced oxidative stress was studied in transformed Cichorium intybus roots grown in vitro and colonized or not by Glomus intraradices. The arbuscular mycorrhizal fungus development (colonization, extraradical hyphae length, and spore formation) was significantly reduced in response to increasing concentrations of benzo[a]pyrene (35–280 μM). The higher length of arbuscular mycorrhizal roots, compared to non-arbuscular mycorrhizal roots following benzo[a]pyrene exposure, pointed out a lower toxicity of benzo[a]pyrene in arbuscular mycorrhizal roots, thereby suggesting protection of the roots by mycorrhization. Accordingly, in benzo[a]pyrene-exposed arbuscular mycorrhizal roots, statistically significant decreases were observed in malondialdehyde concentration and 8-hydroxy-2′-desoxyguanosine formation. The higher superoxide dismutase activity detected in mycorrhizal chicory roots could explain the benzo[a]pyrene tolerance of the colonized roots. Taken together, these results support an essential role of mycorrhizal fungi in protecting plants submitted to polycyclic aromatic hydrocarbon, notably by reducing polycyclic aromatic hydrocarbon-induced oxidative stress damage.  相似文献   

18.
Guivarch  A.  Hinsinger  P.  Staunton  S. 《Plant and Soil》1999,211(1):131-138
Uptake by roots from contaminated soil is one of the key steps in the entry of radiocaesium into the food chain. We have measured the uptake by roots of radiocaesium and its transfer to shoots of a heathland grass, sheep fescue (Festuca ovina L.) from two contrasting agricultural soils, a sandy podzol and a clayey calcareous soil. A culture device which keeps the roots separate from the soil was used thus allowing rhizosphere soil to be obtained easily and enhancing the effect of root action. Biomass production and 137Cs in shoots and roots were recorded. Cs adsorption was studied on both the initial, nonrhizosphere soil and on rhizosphere soil in dilute soil suspension. Cs desorption was measured by resuspending subsamples of contaminated soil in solutions containing various concentrations of stable Cs. The proportion of Cs fixed, i.e. not readily desorbable, was calculated by comparison of the adsorption and desorption isotherms. Uptake by roots varied considerably between soils and did not appear to be diffusion limited. Root-to-shoot transfer did not differ for the two soils studied. Root action considerably enhanced Cs adsorption on the soils, particularly the in sandy podzol with a low Cs affinity. The value of Kd was increased by up to an order of magnitude. A large proportion of adsorbed Cs was found to be fixed, the Kd was up to seven times greater on desorption than adsorption, indicating that up to 80% of adsorbed Cs was not readily exchangeable. Root action had little effect on the fixed fraction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The objective of the study was to compare the water relations of two indigenous [Podocarpus falcatus (Thunb.) Endl., Croton macrostachys Hochst. ex. Del.] and two exotic tree species (Eucalyptus globulus Labille., Cupressus lusitanica Miller) growing in the same location in the montane Munessa State Forest, southern Ethiopia. Stem flow was measured with Granier type thermal dissipation probes. Sap flux, normalized per unit sapwood area, and the total sapwood areas of the particular trees were used to estimate daily transpiration. Maximum daily transpiration values (60 kg water) were recorded for Croton when at full foliage. After shedding most of its leaves in the dry season transpiration was reduced to 8 kg per day. Eucalyptus had the next highest transpiration (55 kg), in this case at the peak of the dry season. It transpired 4–5 times more than Podocarpus and Cupressus trees of similar size. Maximum stem flux density was tree-size dependent only in Croton. Diurnal patterns of stem flux indicated that Croton, Eucalyptus and Podocarpus, in contrast to Cupressus, responded more directly to light than to atmospheric water pressure deficit. At high VPD (>1.0 kPa) stem flux reached a plateau in Croton and Podocarpus indicating stomatal limitation. Per unit leaf area Croton had the highest and Podocarpus and Cupressus the lowest daily transpiration rates. In summary, the pioneer tree Croton had the lowest and Podocarpus the highest water use efficiency. The contribution of the study to the understanding of the role of each tree species in the hydrology of the natural forest and the plantations is discussed.  相似文献   

20.
Gorissen  A.  Jansen  A. E.  Olsthoorn  A. F. M. 《Plant and Soil》1993,157(1):41-50
Deposition of ammonium sulphate is often cited as a major factor causing forest dieback in The Netherlands. In this study, three-year-old Douglas-firs (Pseudotsuga menziesii [Mirb.] Franco) were potted and subsequently treated for two years with ammonium sulphate solutions, corresponding to total annual N applications of 5, 50 and 200 kg ha-1 yr-1. After 6, 18 and 23 months, five trees per treatment were harvested, and growth, nutrient concentrations, mycorrhizal frequency and bacterial population on the roots were determined, together with soil chemical factors. At the highest treatment level, ammonium accumulated in the soil causing increases in H+ and Al-ion concentrations. Dry plant weights and root/shoot ratio were not significantly affected but the specific root length, i.e. length per gram dry weight, decreased significantly with increasing ammonium application. Mycorrhizal frequency and total bacterial population on the roots were also reduced. Reduced uptake of nutrients, especially phosphorus, was associated with these changes in the soil chemical and biological status. Extrapolation of the results to natural ecosystems should be done with great care, but undoubtedly, a potential danger exists for natural, often poorly buffered-systems, since accumulation of ammonium occurs continuously over many years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号