首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of rat striatal slices in the absence of oxygen (anoxia), glucose (aglycemia), or oxygen plus glucose (ischemia) caused significant increases in dopamine (DA) release. Whereas anoxia decreased extracellular 3,4-dihydroxyphenylacetic acid levels by 50%, aglycemia doubled it, and ischemia returned this aglycemia-induced enhancement to its control level. Although nomifensine, a DA uptake blocker, completely protected the slices against anoxia-induced DA depletion, aglycemia- and ischemia-induced increases were not altered. Moreover, hypothermia differentially affected DA release stimulated by anoxia, aglycemia, and ischemia. Involvement of glutamate in DA release induced by each experimental condition was tested by using MK-801 and also by comparing the glutamate-induced DA release with that during anoxia, aglycemia, or ischemia. MK-801 decreased the anoxia-induced DA depletion in a dose-dependent manner. This treatment, however, showed a partial protection in aglycemic conditions but failed to improve ischemia-induced DA depletion. Like anoxia, DA release induced by exogenous glutamate was also sensitive to nomifensine and hypothermia. These results indicate that anoxia enhances DA release by a mechanism involving both the reversed DA transporter and endogenous glutamate. Partial or complete lack of effect of nomifensine, hypothermia, or MK-801 in the absence of glucose or oxygen plus glucose also suggests that experimental conditions, such as the degree of anoxia/ischemia, may alter the mechanism(s) involved in DA depletion.  相似文献   

2.
Hypoxia induces alterations of central monoaminergic transmission and of behavior. We studied the effect of hypoxia on adult and newborn rats to obtain more information about long-lasting changes of dopamine (DA) transmission caused by neonatal hypoxia. One single exposure of adult rats to hypoxia leads to short-term alterations of DA uptake: decreased affinity of the uptake carrier to DA (Km, 269.5% versus control) and a sharp increase of Vmax up to 301.4% resulting in an increase of total uptake of DA into the striatum synaptosomes. The K+-evoked DA release decreased to 69.5%. After 1 week of recovery all parameters are normalized. Chronic postnatal hypoxia (postnatal day 2-11) caused long-lasting changes of DA release and uptake opposite to those observed in adult rats. Three months after hypoxia, the K+-stimulated DA release was enhanced (132% of control), and the uptake was reduced due to decreased affinity of the uptake carrier system for the substrate (Km, 187% of control value). In conclusion, the alterations observed after chronic postnatal hypoxia reflect special adaptive processes that are related to the high plasticity of the immature neonatal brain and contribute to an increased DA function in the nigrostriatal system.  相似文献   

3.
The potassium-stimulated release of acetylcholine (ACh), glutamate (GLU) and dopamine (DA) from mouse striatal slices was studied during anoxia and/or 3,4-diaminopyridine (DAP) treatment. Anoxia, in the presence of calcium, increased DA and GLU release, but depressed ACh release. Omission of calcium from an anoxic incubation further stimulated GLU and DA release and impaired ACh release. Under normoxic conditions, DAP (100 M) increased the release of all three neurotransmitters; the sensitivity of the slices to DAP changed with the presence or absence of an acetylcholinesterase inhibitor in the preincubation media. During an anoxic incubation, DAP did not ameliorate the anoxic-induced, K+-stimulated impairment of ACh release, but significantly reduced the K+-stimulated release of GLU and DA. These results are consistent with the hypothesis that hypoxia induces a presynaptic deficit that may underlie postsynaptic ischemic-induced changes. Amelioration of these presynaptic alterations in neurotransmitter release may be an effective approach to preventing hypoxic-induced damage.  相似文献   

4.
Incubation of rat striatal slices in anoxic medium caused significant alterations in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) outputs; while DA release increased several times, 50% decline in DOPAC output was observed under this condition. Tissue ATP level, on the other hand, was decreased 40% by anoxia. Presence of resveratrol in the medium decreased anoxia-induced DA release in a concentration-dependent manner. Enhanced DA output, however, was declined slightly by epicatechine and catechine, and not altered significantly by morin hydrate and quercetin dehydrate which are other penolic compounds present in the red wine. In contrary to DA output, anoxia-induced decline in tissue ATP level was not ameliorated by resveratrol. In addition to anoxia, resveratrol, as observed with DA uptake blocker nomifensine, also reduced DA release stimulated by ouabain. Efficiencies of both resveratrol and nomifensine to attenuate ouabain-induced DA output, however, were closely dependent on ouabain concentration in the medium. These results indicate that some phenolic compounds, particularly resveratrol decrease anoxia-induced DA output and appear promising agents to improve the alterations occurred under anoxic-ischemic conditions.  相似文献   

5.
We have investigated the effects of preconditioning pheochromocytoma (PC12) cells with intermittent hypoxia (IH) on transmitter release during acute hypoxia. Cell cultures were exposed to either alternating cycles of hypoxia (1% O(2) + 5% CO(2); 30 s/cycle) and normoxia (21% O(2) + 5% CO(2); 3 min/cycle) for 15 or 60 cycles or normoxia alone (control) for similar durations. Control and IH cells were challenged with either hyperoxia (basal release) or acute hypoxia (Po(2) of approximately 35 Torr) for 5 min, and the amounts of dopamine (DA) and acetylcholine (ACh) released in the medium were determined by HPLC combined with electrochemical detection. Hypoxia augmented DA (approximately 80%) but not ACh release in naive cells, whereas, in IH-conditioned cells, it further enhanced DA release (ranging from 120 to approximately 145%) and facilitated ACh release (approximately 30%). Hypoxia-evoked augmentation of transmitter release was not seen in cells conditioned with sustained hypoxia. IH-induced increase in DA but not IH-induced ACh release during hypoxia was partially inhibited by cadmium chloride (100 microM), a voltage-gated Ca(2+) channel blocker. By contrast, 2-aminoethoxydiphenylborate (75 microM), a blocker of inositol 1,4,5-trisphosphate (IP(3)) receptors, and N-acetyl-L-cysteine (300 microM), a potent scavenger of reactive oxygen species, either attenuated or abolished IH-evoked augmentation of transmitter release during hypoxia. Together, the above results demonstrate that IH conditioning increases hypoxia-evoked neurotransmitter release from PC12 cells via mechanisms involving mobilization of Ca(2+) from intracellular stores through activation of IP(3) receptors. Our findings also suggest that oxidative stress plays a central role in IH-induced augmentation of transmitter release from PC12 cells during acute hypoxia.  相似文献   

6.
We investigated the oxygen (O(2)) uptake of equine articular chondrocytes to assess their reactions to anoxia/re-oxygenation. They were cultured under 5% or 21% gas phase O(2) and at glucose concentrations of 0, 1.0 or 4.5g/L in the culture medium (n=3). Afterwards, the O(2) consumption rate of the chondrocytes was monitored (oxymetry) before and after an anoxia period of 25min. The glucose consumption and lactate release were measured at the end of the re-oxygenation period. The chondrocytes showed a minimal O(2) consumption rate, which was hardly changed by anoxia. Independently from the O(2) tension, glucose uptake by the cells was about 30% of the available culture medium glucose, thus higher for cells at 4.5g/L glucose (n=3). Lactate release was also independent from O(2) tension, but lower for cells at 4.5g/L glucose (n=3). Our observations indicated that O(2) consumption by equine chondrocytes was very low despite a functional mitochondrial respiratory chain, and nearly insensitive to anoxia/re-oxygenation. But the chondrocytes metabolism was modified by an excess of O(2) and glucose.  相似文献   

7.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   

8.
The purpose of the present study is to clarify the effects of hypoxia on catecholamine release and its mechanism of action. For this purpose, using cultured bovine adrenal chromaffin cells, we examined the effects of hypoxia on high (55 mM) K(+)-induced increases in catecholamine release, in cytosolic free Ca2+ concentration ([Ca2+]i), and in 45Ca2+ uptake. Experiments were carried out in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). High K(+)-induced catecholamine release was inhibited by hypoxia to approximately 40% of the control value, but on reoxygenation the release returned to control levels. Hypoxia had little effect on ATP concentrations in the cells. In the hypoxic medium, [Ca2+]i (measured using fura-2) gradually increased and reached a plateau of approximately 1.0 microM at 30 min, whereas the level was constant in the control medium (approximately 200 nM). High K(+)-induced increases in [Ca2+]i were inhibited by hypoxia to approximately 30% of the control value. In the cells permeabilized by digitonin, catecholamine release induced by Ca2+ was unaffected by hypoxia. Hypoxia had little effect on basal 45Ca2+ uptake into the cells, but high K(+)-induced 45Ca2+ uptake was inhibited by hypoxia. These results suggest that hypoxia inhibits high K(+)-induced catecholamine release and that this inhibition is mainly the result of the inhibition of high K(+)-induced increases in [Ca2+]i subsequent to the inhibition of Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

9.
Analyses were made of the phsopholipid fatty acids and the antioxidant enzymes in the carp (Cyprinus carpio morpha) at three different oxygen concentrations, corresponding to hyperoxia, hypoxia and anoxia. Variations of the oxygen concentration were found to influence the quantities of phsopholipid fatty acids, as well as the antioxidant enzyme activities. In hyperoxia and hypoxia the amount of polyunsaturated fatty acids in carp liver was higher than in anoxia, but in other tissues there was no significant differences. As to the antioxidant enzyme system, the glutathione peroxidase activity and the lipid peroxidation value increased significantly with decrease of the oxygen concentration, while the total superoxide dismutase activity decreased on lowering of the oxygen level.  相似文献   

10.
In isolated perfused rabbit hearts, coronary vasodilation, produced by reduced oxygen tension seems to be independent of myocardial prostaglandin biosynthesis. a) Anoxia (N2: CO2 95: 5%) produced coronary vasodilation without causing prostaglandin-like substance (PLS) biosynthesis and release; b) the decrease in coronary resistance during hypoxia (N2:O2:CO2 — 80:15:5 %) was sustained during myocardial perfusion with the low oxygen media despite the transitory nature of its PLS release; and c) indomethacin, which abolished basal or ADP stimulated myocardial PLS release, did not abolish the coronary vasodilation produced by ischemia, hypoxia, or anoxia.  相似文献   

11.
All 20.000 different fish species vary greatly in their ability to tolerate and survive fluctuating oxygen concentrations in the water. Especially fish of the genus Carassius, e.g. the crucian carp and the goldfish, exhibit a remarkable tolerance to limited/absent oxygen concentrations. The metabolic changes of anoxia-tolerant crucian carp were recently studied and published. Contrary to crucian carp, the hypoxia-tolerant common carp cannot survive a complete lack of oxygen (anoxia). Therefore, we studied the 1H-NMR-based metabolomics of brain, heart, liver and white muscle extracts of common carp, subjected to anoxia (0 mg O2 l?1) and hypoxia (0.9 mg O2 l?1) at 5 °C. Specifically, fish were exposed to normoxia (i.e. 9 mg O2 l?1; controls 24 h, 1 week and 2 weeks), acute hypoxia (24 h), chronic hypoxia (1 week) and chronic hypoxia (1 week) with normoxic reoxygenation (1 week). Additionally, we also investigated the metabolic responses of fish to anoxia for 2 h. Both anoxia and hypoxia significantly changed the tissue levels of standard energy metabolites as lactate, glycogen, ATP/ADP and phosphocreatine. Remarkably, anoxia induced increased lactate levels in all tissues except for the heart whereas hypoxia resulted in decreased lactate concentrations in all tissues except for brains. Furthermore, hypoxia and anoxia influenced amino acids (alanine, valine/(iso)leucine) and neurotransmitters levels (GABA, glutamate). Lastly, we also detected ‘other’ i.e. previously not reported compounds to play a role in the present context. Scyllo-inositol levels changed significantly in heart, liver and muscle, providing novel insights into the anoxia/hypoxic responses of the common carp.  相似文献   

12.
Release of neurotransmitters, including dopamine and glutamate, has been implicated in hypoxia/ischemia-induced alterations in neuronal function and in subsequent tissue damage. Although extensive studies have been done on the mechanism underlying the changes in glutamate release, few have examined the mechanism that is responsible for the changes in catecholamines. Rat pheochromocytoma-12 (PC12) cells synthesize, store, and release catecholamines including DA and NE. Therefore, we used HPLC and ED to evaluate extracellular DA and NE concentrations in a medium during chemical hypoxia in PC12 cells. Chemical hypoxia produced by KCN induced differential release of DA and NE. Under normal glucose conditions, KCN induced release of NE, but not DA. Under glucose-free conditions, KCN-induced release of DA was elevated transiently, whereas the release of NE increased progressively. Under parallel conditions, KCN biphasically elevated the level of cytosolic free calcium ([CA(2+)](i)) in glucose-free DMEM, peaking at 95 +/- 18 nM at 1,107 +/- 151 s, followed by a new plateau level at 249 +/- 24 nM sustained from 4,243 +/- 466 to 5,263 +/- 440 s. Cell toxicity, as measured by LDH release, was increased significantly by KCN in glucose-free DMEM but was diminished in the presence of glucose, and was correlated with DA release by chemical hypoxia. The protein kinase C (PKC) inhibitor GO6976 or staurosporine inhibited KCN-induced LDH release as well as the release of NE and DA. Taken together, selective activation of DA but not NE was correlated with the LDH release by chemical hypoxia, and was diminished with GO6976 or staurosporine. These results suggest that selective activation of PKC isoforms is involved in the chemical hypoxia-induced DA release, which may lead to neuronal cell toxicity.  相似文献   

13.
Abstract: The effect of anoxia and ischemia on the release of amino acid transmitters from cerebellar slices induced by veratridine or high [K+] was studied. Synaptic specificity was tested by examining the tetradotoxin (TTX)-sensitive and the Ca2+-dependent components of stimulated release. Evoked release of endogenous amino acids was investigated in addition to more detailed studies on the stimulated efflux of preloaded [14C]GABA and d -[3H]aspartate (a metabolically more stable anologue of acidic amino acids).[14C]GABA release evoked by either method of stimulation was unaffected by periods of up to 35 min of anoxia and declined moderately by 45 min. In contrast, induced release of d -[3H]Asp increased markedly during anoxia to a peak at about 25 min, followed by a decline when anoxia was prolonged to 45 min. Evidence was obtained that the increased evoked efflux of d -[3H]Asp from anoxic slices was not due to impaired reuptake of the released amino acid and that it was completely reversible by reoxygenation of the slices. Results of experiments examining the evoked release of endogenous amino acids in anoxia were consistent with those obtained with the exogenous amino acids. Only 4 of the 10 endogenous amino acids studied exhibited TTX-sensitive veratridine-induced release under aerobic conditions (glutamate, aspartate, GABA, and glycine). Anoxia for 25 min did not affect the stimulated efflux of these amino acids with the exception of glutamate, which showed a significant increase. Compared with anoxia, effects of ischemia on synaptic function appeared to be more severe. Veratridine-evoked release of [14C]GABA was already depressed by 10 min and that of d -[3H]Asp showed a modest elevation only at 5 min. Stimulated release of d -Asp and labelled GABA declined progressively after 5 min. These findings were compared with changes in tissue ATP concentrations and histology. The latter studies indicated that in anoxia the earliest alterations are detectable in glia and that nerve terminals were the structures by far the most resistant to anoxic damage. The results thus indicated that evoked release of amino acid transmitters in the cerebellum is compromised only by prolonged anoxia in vitro. In addition, it would appear that the stimulated release of glutamate is selectively accentuated during anoxia. This effect may have a bearing on some hypoxic behavioral changes and, perhaps, also on the well-known selective vulnerability of certain neurons during hypoxia.  相似文献   

14.
The sensitivity of liver cells to anoxia is a major problem afflicting liver preservation and transplantation. Intermittent ischemia has been proposed to reduce reperfusion injury. The aim of the study was to assess oxygen free radical formation and cell injury during continuous or intermittent anoxia/reoxygenation in rat hepatocytes. Anion superoxide was measured by lucigenin-enhanced chemiluminescence and cell damage by LDH release and trypan blue uptake. During anoxia, superoxide generation dropped to background level in both groups; trypan blue uptake and LDH release, which increased progressively, were significantly greater in hepatocytes exposed to continuous compared to intermittent anoxia. During reoxygenation, a massive generation of superoxide anion formation, followed by a sharp increase in LDH release, was observed in both groups. However, both oxyradical generation and cell injury were significantly greater in cells exposed to continuous compared to intermittent anoxia. The data, showing that intermittent oxygen deprivation reduce liver cell injury and oxygen free radical formation determined by anoxia/reoxygenation, suggest a novel possible approach to the reduction of reperfusion injury.  相似文献   

15.
X M Guan  W J McBride 《Life sciences》1988,42(25):2625-2631
The effect of local pH on the in vivo efflux of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following administration of d-amphetamine (AMPH) was examined in the striatum of the anesthetized rat using two bilaterally placed push-pull cannulae. At both pH 7.3 and 6.4, the baseline efflux values for DA and DOPAC were approximately 0.2 and 25 pmoles/15 min, respectively. Subcutaneous injection of 2 mg/kg AMPH induced a 3-fold increase of DA release at pH 7.3 and a 21-fold increase of DA release at pH 6.4. In both cases, the maximum was reached at about 30 min after the drug administration. Following the administration of AMPH, the efflux of DOPAC was reduced to the same degree (20% of control values) under both pH conditions. In vitro data showed that the lower pH did not alter the recovery of DA or DOPAC. In addition, release of DA produced by local perfusion with 5 uM AMPH was also greater at the lower pH (50-fold increase over baseline) than at the physiological pH (10-fold increase over baseline). The stimulated DA release produced by local perfusion with 35 mM K+, however, was the same at both pH values. Preliminary experiments also indicated that there was a pH effect for AMPH-induced serotonin (5-HT) release but that the difference in the amount of 5-HT in the two media was not nearly as large as that obtained for DA. The markedly elevated level of extracellular DA at the lower pH might be due to a higher affinity of the DA uptake system for AMPH, thereby producing greater inhibition of DA uptake as well as enhanced DA release. The data also suggest an enhanced affinity of AMPH for 5-HT uptake sites at the lower pH.  相似文献   

16.
Exposing brain slices to reduced oxygen tensions or impairing their ability to utilize oxygen with KCN decreases acetylcholine (ACh) but increases dopamine (DA) and glutamate in the medium at the end of a release incubation. To determine if these changes are due to alterations in the presynaptic terminals, release from isolated nerve endings (i.e. synaptosomes) was determined during histotoxic hypoxia (KCN). KCN reduced potassium-stimulated synaptosomal ACh release and increased dopamine and glutamate release. Since several lines of evidence suggest that altered calcium homeostasis underlies these changes in release, the effects of reducing medium calcium concentrations from 2.3 to 0.1-mM were determined. In low calcium medium, KCN still increased dopamine and glutamate release, but had no effect on ACh release. Hypoxia increased cytosolic-free calcium in both the normal and low calcium medium, although the elevation was less in the low calcium medium. Thus, the effects of histotoxic hypoxia on cytosolic free calcium concentration paralleled those on glutamate and dopamine release. Reducing the glucose concentration of the medium also increased cytosolic-free calcium. The data are consistent with the hypothesis that hypoxia and hypoglycemia increase cytosolic-free calcium, which stimulates the release of dopamine and glutamate, whose excessive release may lead to subsequent cellular damage postsynaptically.Abbreviations (cps) counts per second - (FAM) fura-2 acetoxymethylester - (ACh) acetylcholine - (Cai) cytosolic free calcium concentration - (DMSO) dimethylsulphoxide - (DA) dopamine - (TES) N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - (Rmin) the ratio of the fluorescence of fura at 510 nm after excitation at 340 nm to that after excitation at 380 nm in the absence of calcium - (Rmax) or to that in the presence of saturating calcium - (SNK) Student-Newman-Keuls  相似文献   

17.
The ability of hypoxia (PO2 57 Torr) and anoxia (PO2 0 Torr) to induce the release of histamine or sulfidopeptide leukotrienes from dispersed porcine parenchymal lung cells was examined. Spontaneous release of histamine (9.2 +/- 1.3%) was not significantly increased during hypoxia or anoxia, and spontaneous leukotriene release was not detected under any conditions. The release of leukotriene induced by A23187 (78 +/- 11 pmol leukotriene D4 equivalent/10(7) parenchymal lung cells) was unchanged during hypoxia and was significantly reduced (55.4 +/- 7.7% control leukotriene release) during anoxia, whereas A23187-induced histamine release (63.2 +/- 4.2% total cell histamine) was unaffected by reduced oxygenation. Reduction of final buffer pH from 7.4 to 7.0 did not affect mediator release. High-pressure liquid chromatographic analysis of the released leukotrienes revealed a mixture of leukotrienes C4 and D4, with a symmetrical reduction in product during anoxia. Although leukotriene release in response to hypoxia was not demonstrated, the findings do not preclude limited local release of leukotrienes, perhaps in association with increased smooth muscle responsiveness.  相似文献   

18.
The evolution of air-breathing organs (ABOs) is associated not only with hypoxic environments but also with activity. This investigation examines the effects of hypoxia and exercise on the partitioning of aquatic and aerial oxygen uptake in the Pacific tarpon. The two-species cosmopolitan genus Megalops is unique among teleosts in using swim bladder ABOs in the pelagic marine environment. Small fish (58-620 g) were swum at two sustainable speeds in a circulating flume respirometer in which dissolved oxygen was controlled. For fish swimming at 0.11 m s(-1) in normoxia (Po2 = 21 kPa), there was practically no air breathing, and gill oxygen uptake was 1.53 mL kg(-0.67) min(-1). Air breathing occurred at 0.5 breaths min(-1) in hypoxia (8 kPa) at this speed, when the gills and ABOs accounted for 0.71 and 0.57 mL kg(-0.67) min(-1), respectively. At 0.22 m s(-1) in normoxia, breathing occurred at 0.1 breaths min(-1), and gill and ABO oxygen uptake were 2.08 and 0.08 mL kg(-0.67) min(-1), respectively. In hypoxia and 0.22 m s(-1), breathing increased to 0.6 breaths min(-1), and gill and ABO oxygen uptake were 1.39 and 1.28 mL kg(-0.67) min(-1), respectively. Aquatic hypoxia was therefore the primary stimulus for air breathing under the limited conditions of this study, but exercise augmented oxygen uptake by the ABOs, particularly in hypoxic water.  相似文献   

19.
Effects of hypoxia, anoxia, and endogenous ethanol (EtOH) on selected temperature (T(sel)) and activity in goldfish were evaluated. Blood and brain EtOH concentrations ([EtOH]) and brain oxygen partial pressure (PO(2)) were quantified at crucial ambient oxygen pressures. Below a threshold value near 31 Torr, T(sel) decreased as a function of environmental PO(2). T(sel) of 15 degrees C-acclimated fish was approximately 10 degrees C at the onset of anoxia and changed little over 2 h. Activity showed a similar response pattern. Brain [EtOH] was significantly elevated above control levels after 1 h anoxia. In normoxic water, T(sel) remained different in previously anoxic and normoxic control fish for approximately 20 min. Blood [EtOH] of previously anoxic fish remained significantly elevated ([EtOH] >4.0 micromol/g blood), and activity was significantly depressed at 20 min. Brain PO(2) reached normal levels in <3 min. We conclude that [EtOH] (brain or blood) and brain PO(2) are not proximal causes of either behavioral anapyrexia (hypothermia) or inactivity in goldfish exposed to oxygen-depleted environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号