共查询到20条相似文献,搜索用时 15 毫秒
1.
Thuau R Guilhaudis L Ségalas-Milazzo I Chartrel N Oulyadi H Boivin S Fournier A Leprince J Davoust D Vaudry H 《Peptides》2005,26(5):779-789
A novel hypothalamic neuropeptide of the RFamide family, comprising 26 amino acids residues and thus termed 26RFa, has been recently characterized in human, and was found to be the endogenous ligand for the orphan G protein-coupled receptor GPR103. Intracerebroventricular injection of 26RFa provokes a robust increase in food intake in rodents. In the present study, we have investigated the solution conformation of 26RFa by using two-dimensional NMR spectroscopy in different media. In water, 26RFa exhibits mainly a random coil conformation although the presence of a nascent helix was detected between residues 6 and 15. In methanol, 26RFa adopts a well-defined conformation consisting of an amphipathic alpha-helical structure (Pro4-Arg17), flanked by two N- and C-terminal disordered regions. The strong conservation, from amphibians to mammals, of the amino acid sequence corresponding to the amphipathic helix and to the C-terminal flexible octapeptide of 26RFa, suggests that these two domains are crucial for the interaction of the peptide with its receptor. 相似文献
2.
Egido EM Hernández R Leprince J Chartrel N Vaudry H Marco J Silvestre RA 《Peptides》2007,28(4):725-730
26RFa is a novel orexigenic neuropeptide identified as the endogenous ligand of the orphan G protein-coupled receptor GPR103. GPR103 shares sequence identity with the receptors for neuropeptide-Y and galanin, two peptides known to inhibit insulin secretion. We have investigated the effect of 26RFa on insulin and glucagon secretion in the perfused rat pancreas. 26RFa dose-dependently reduced glucose-induced insulin release, inhibited the insulin responses to both arginine and exendin-4 and did not affect glucagon output. The inhibitory effect of 26RFa on exendin-4-induced insulin secretion was not observed in pancreata from pertussis toxin-treated rats, thus suggesting that 26RFa may inhibit insulin secretion, at least in part, via a pertussis toxin-sensitive G(i) protein coupled to the adenylyl cyclase system. 相似文献
3.
Molecular identification and functional characterization of the kisspeptin/kisspeptin receptor system in lower vertebrates 总被引:2,自引:0,他引:2
The KISS1 gene encodes the kisspeptin neuropeptide, which activates the KISS1 receptor (KISS1R; G protein-coupled receptor 54; GPR54) and participates in neuroendocrine regulation of GnRH secretion. To study the physiological function(s) and evolutionary conservation of KISS1, we cloned opossum, Xenopus, and zebrafish kiss1 cDNAs. Processing zebrafish, Xenopus, or opossum KISS proteins would liberate a carboxy-terminal amidated peptide with 52, 54, or 53 amino acid residues, respectively. Phylogenetic analysis of all known vertebrate KISS1 peptides showed clear clustering of the sequences according to canonical vertebrate classes. The zebrafish kiss1 gene consists of two exons and one intron. Real-time PCR analysis of two kiss1R cloned from zebrafish brain found expression of kiss1, kiss1ra, and kiss1rb, with kiss1ra-more similar to other piscine Kiss1 receptors-highly expressed in the gonads and kiss1rb in other nonbrain tissues. In females kiss1 mRNA levels gradually increased during the first few weeks of life to peak in fish with ovaries containing mature oocytes, while in males kiss1 mRNA levels peaked after 6 wk postfertilization when the testes exhibited initial stages of spermatogenesis and decreased after puberty. Zebrafish kiss1ra and kiss1rb were expressed differentially with similar patterns in both genders. These results indicate that the Kiss1/Kiss1r system may participate in puberty initiation in fish as well. Like human KISS1R, Kiss1ra transduces its activity via the PKC pathway, whereas Kiss1rb does so via both PKC and PKA pathways. The human KISS1R was highly activated by both huKISS10amide and zfKISS10amide, whereas both zebrafish Kiss1 receptor types were less sensitive to amidation. 相似文献
4.
Structure and functions of the novel hypothalamic RFamide neuropeptides R-RFa and 26RFa in vertebrates 总被引:3,自引:0,他引:3
Chartrel N Bruzzone F Leprince J Tollemer H Anouar Y Do-Régo JC Ségalas-Milazzo I Guilhaudis L Cosette P Jouenne T Simonnet G Vallarino M Beauvillain JC Costentin J Vaudry H 《Peptides》2006,27(5):1110-1120
A number of RFamide peptides have been characterized in invertebrate species and these peptides have been found to exert a broad spectrum of biological activities. In contrast, in vertebrates, our knowledge on RFamide peptides is far more limited and only a few members of the RFamide peptide family have been identified in various vertebrate classes during the last years. The present review focuses on two novel RFamide peptides, Rana RFamide (R-RFa) and 26RFa, that have been recently isolated from the amphibian brain. R-RFa shares the C-terminal LPLRFamide motif with other RFamide peptides previously identified in mammals, birds and fish. The distribution of R-RFa in the frog brain exhibits strong similarities with those of other LPLRFamide peptides, notably in the periventricular region of the hypothalamus. There is also evidence that the physiological functions of R-RFa and other LPLRFamide peptides have been conserved from fish to mammals; in particular, all these peptides appear to be involved in the control of pituitary hormone secretion. 26RFa does not exhibit any significant structural identity with other RFamide peptides and this peptide is the only member of the family that possesses an FRFamide motif at its C-terminus. The strong conservation of the primary structure of 26RFa from amphibians to mammals suggests that this RFamide peptide is involved in important biological functions in vertebrates. As for several other RFamide peptides, 26RFa-containing neurons are present in the hypothalamus, notably in two nuclei involved in the control of feeding behavior. Indeed, 26RFa is a potent stimulator of appetite in mammals. Concurrently, recent data suggest that 26RFa exerts various neuroendocrine regulatory activities at the pituitary and adrenal level. 相似文献
5.
Bruzzone F Lectez B Tollemer H Leprince J Dujardin C Rachidi W Chatenet D Baroncini M Beauvillain JC Vallarino M Vaudry H Chartrel N 《Journal of neurochemistry》2006,99(2):616-627
26RFa is a novel RFamide peptide originally isolated in the amphibian brain. The 26RFa precursor has been subsequently characterized in various mammalian species but, until now, the anatomical distribution and the molecular forms of 26RFa produced in the CNS of mammals, in particular in human, are unknown. In the present study, we have investigated the localization and the biochemical characteristics of 26RFa-like immunoreactivity (LI) in two regions of the human CNS--the hypothalamus and the spinal cord. Immunohistochemical labeling using specific antibodies against human 26RFa and in situ hybridization histochemistry revealed that in the human hypothalamus 26RFa-expressing neurons are located in the paraventricular and ventromedial nuclei. In the spinal cord, 26RFa-expressing neurons were observed in the dorsal and lateral horns. Characterization of 26RFa-related peptides showed that two distinct molecular forms of 26RFa are present in the human hypothalamus and spinal cord, i.e. 26RFa and an N-terminally elongated form of 43 amino acids designated 43RFa. These data provide the first evidence that 26RFa and 43RFa are actually produced in the human CNS. The distribution of 26RF-LI suggests that 26RFa and/or 43RFa may modulate feeding, sexual behavior and transmission of nociceptive stimuli. 相似文献
6.
Antimicrobial peptides (AMPs) include a diverse group of gene-encoded molecules that play a role in innate defense in many organisms. Evolutionary analyses of the AMP genes can be challenging because of gene duplication and diversification. Recently discovered, hepcidins are small, cysteine-rich antimicrobial peptides that also function as hormonal regulators of iron homeostasis. In this paper we investigated the organization, expression and molecular evolution of hepcidin. From searches of the literature and public genomic databases we collected 68 different hepcidin gene products from 51 different species, all among the vertebrates. Although some species have multiple hepcidin homologues, we suggest that each contains only one copy that functions as an iron regulator. Despite the recent report of hepcidin sequences in the pigeon (Fu, Y.M., Li, S.P., Wu, Y.F., Chang, Y.Z., 2007. Identification and expression analysis of hepcidin-like cDNAs from pigeon (Columba livia). Mol. Cell. Biochem. 305, 191-197.), searches of the chicken genomic, EST, and HTGS databases did not reveal any evidence of the presence of this gene in birds. This, along with the absence of reported avian transferrin receptor 2 and hemojuvelin sequences, suggests that iron homeostasis in birds may be regulated by an alternative mechanism. 相似文献
7.
Ohkita M Saito S Imagawa T Takahashi K Tominaga M Ohta T 《The Journal of biological chemistry》2012,287(4):2388-2397
The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca(2+)](i)). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ~60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca(2+)](i) increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. 相似文献
8.
Chenggang Zhu Haishan Huang Rongsheng Hua Dong Yang Cunxin Zhang Jeffrey L. Benovic 《FEBS letters》2009,583(9):1463-42402
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective. 相似文献
9.
Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestor of Colubroidea snakes has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40-50 My ago. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era. 相似文献
10.
Lembo PM Grazzini E Cao J Hubatsch DA Pelletier M Hoffert C St-Onge S Pou C Labrecque J Groblewski T O'Donnell D Payza K Ahmad S Walker P 《Nature cell biology》1999,1(5):267-271
Gene-knockout studies of melanin-concentrating hormone (MCH) and its effect on feeding and energy balance have firmly established MCH as an orexigenic (appetite-stimulating) peptide hormone. Here we identify MCH as the ligand for the orphan receptor SLC-1. The rat SLC-1 is activated by nanomolar concentrations of MCH and is coupled to the G protein G alpha i/o. The pattern of SLC-1 messenger RNA expression coincides with the distribution of MCH-containing nerve terminals and is consistent with the known central effects of MCH. Our identification of an MCH receptor could have implications for the development of new anti-obesity therapies. 相似文献
11.
Lu Bihong Smock Steven L. Castleberry Tessa A. Owen Thomas A. 《Molecular and cellular biochemistry》2001,226(1-2):129-140
12.
13.
《Peptides》2016
The GPR103 receptor is a G protein-coupled receptor, which plays a role in several physiological functions. However, the role of the GPR103 receptor in anxiety has not been clarified. The first aim of our study was to elucidate the involvement of the GPR103 receptor in anxious behavior. Mice were treated with peptide P550, which is the mouse homolog of neuropeptide 26RFa and has similar activity for the GPR103 receptor as neuropeptide 26RFa. The anxious behavior was investigated using an elevated plus-maze paradigm. The second aim of our study was to investigate the underlying neurotransmissions. Accordingly, mice were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABAA) receptor antagonist, bicuculline, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a nonselective β-adrenergic receptor antagonist, propranolol. Our results demonstrated that peptide P550 reduces anxious behavior in elevated plus maze test in mice. Our study shows also that GABAA-ergic, α- and β-adrenergic transmissions are all involved in this action, whereas 5-HT1 and 5-HT2 serotonergic, muscarinic cholinergic and D2, D3, D4 dopaminergic mechanisms may not be implicated. 相似文献
14.
INTRODUCTIONOpioidactsinthecentralandperipheralnervoussystem(CNSandPNS)to'producenumerouspharmacologicaleffects.Repetitiveorcontinuoususeofopioids,however,causesdrugtoleranceanddependence.Threesubtypesofopioidreceptors,termedp)6,andK,havebeencloned.TheyarecoupledtotheinhibitoryGproteinandnegativelyregulateadenylylcyclasell].RecentlyanewG-proteincoupledreceptortermedopioidreceptor-likereceptor(ORLI)whichbelongstothenewlycharacterizedopioidreceptorsubfamilyhadbeenclonedfromhumanbrainst… 相似文献
15.
Parathyroid hormone (PTH) is a major mediator of calcium and phosphate metabolism through its interactions with receptors in kidney and bone. PTH binds with high affinity to PTH1 and PTH2, members of the superfamily of G protein-coupled receptors. In order to clone the canine PTH1 receptor, a canine kidney cDNA library was screened using the human PTH1 receptor cDNA and two clones were further characterized. The longest clone was 2177 bp and contained a single open reading frame of 1785 bp, potentially encoding a protein of 595 amino acids with a predicted molecular weight of 66.4 kD. This open reading frame exhibits >91% identity to the human PTH1 receptor cDNA and >95% identity when the putative canine and human protein sequences are compared. Competition binding following transfection of the canine PTH1 receptor into CHO cells demonstrated specific displacement of 125I-human PTH 1-34 by canine PTH 1-34, human PTH 1-34, and canine/human parathyroid hormone related peptide (PTHrP) 1-34. Treatment of canine PTH1 receptor transfected cells, but not mock transfected cells, with these ligands also resulted in increased levels of intracellular cAMP. In contrast, the non-related aldosterone secretion inhibiting factor 1-35 neither bound nor activated the canine PTH1 receptor. Northern blot analysis revealed high levels of PTH1 receptor mRNA in the kidney, with much lower, but detectable, levels in aorta, heart, lung, prostate, testis, and skeletal muscle. Together, these data indicate that we have cloned the canine PTH1 receptor and that it is very similar, both in sequence and in functional characteristics, to the other known PTH1 receptors. 相似文献
16.
Background
Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R), which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. 相似文献17.
18.
Sekiguchi T Miyamoto K Mizutani T Yamada K Yazawa T Yoshino M Minegishi T Takei Y Kangawa K Minamino N Saito Y Kojima M 《Gene》2001,273(2):251-257
A comparative study of natriuretic peptide receptor (NPR) was performed by cloning the NPR-A receptor subtype from the bullfrog (Rana catesbeiana) brain and analyzing its functional expression. Like other mammalian NPR-A receptors, the bullfrog NPR-A receptor consists of an extracellular ligand binding domain, a hydrophobic transmembrane domain, a kinase-like domain and a guanylate cyclase domain. Sequence comparison among the bullfrog and mammalian receptors revealed a relatively low ( approximately 45%) similarity in the extracellular domain compared to a very high similarity ( approximately 92%) in the cytoplasmic regulatory and catalytic domains. Expression of NPR-A mRNA was detected in various bullfrog tissues including the brain, heart, lung, kidney and liver; highest levels were observed in lung. Functional expression of the receptor in COS-7 cells revealed that frog atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elicited cyclic guanosine 3'5'-monophosphate production by stimulating the receptor in a dose-dependent manner from 10(-10) M concentrations. Rat ANP was also effective in stimulating the frog receptor whereas rat BNP and porcine BNP were less responsive to the receptor. On the other hand, frog C-type natriuretic peptide (CNP) as well as porcine CNP stimulated the receptor only at high concentrations (10(-7) M). This clearly indicates that the bullfrog receptor is a counterpart of mammalian NPR-A, and is specific for ANP or BNP but not for CNP. 相似文献
19.
Sakamoto T Oda A Yamamoto K Kaneko M Kikuyama S Nishikawa A Takahashi A Kawauchi H Tsutsui K Fujimoto M 《Peptides》2006,27(12):3347-3351
Amino acid sequences for identified prolactin (PRL)-releasing peptides (PrRPs) were conserved in mammals (>90%) or teleost fishes (100%), but there were considerable differences between these classes in the sequence (<65%) as well as in the role of PrRP. In species other than fishes and mammals, we have identified frog PrRP. The cDNA encoding Xenopus laevis prepro-PrRP, which can generate putative PrRPs, was cloned and sequenced. Sequences for the coding region showed higher identity with teleost PrRPs than mammalian homologues, but suggested the occurrence of putative PrRPs of 20 and 31 residues as in mammals. The amino acid sequence of PrRP20 was only one residue different from teleost PrRP20, but shared 70% identity with mammalian PrRP20s. In primary cultures of bullfrog (Rana catesbeiana) pituitary cells, Xenopus PrRPs increased prolactin concentrations in culture medium to 130–160% of the control, but PrRPs was much less potent than thyrotropin-releasing hormone (TRH) causing a three- to four-fold increase in prolactin concentrations. PrRP mRNA levels in the developing Xenopus brain peak in early prometamorphosis, different from prolactin levels. PrRP may not be a major prolactin-releasing factor (PRF), at least in adult frogs, as in mammals. 相似文献
20.
The hypothalamic neuropeptide 26RFa is the most recently identified member of the RFamide peptide family, and this 26RFa signaling system has been shown to be implicated in regulating a variety of physiological processes. In zebrafish,26RFa and two putative receptors, DrGPR103A and DrGPR103B, have been in silico identified, and in vivo data derived from overexpression and loss of function mutation experiments suggest the 26RFa signaling system plays an important role in the hypothalamic regulation of sleep. However, the biochemical and pharmacological information on DrGPR103A/B receptors is still unknown. Here, after cloning of cDNAs of two putative 26RFa receptor genes, DrGPR103A and B, from the total RNA of zebrafish whole body, functional assays demonstrated that both receptors were activated by synthetic zebrafish 26RFa neuropeptide, leading to a significant increase in CRE-driven luciferase activity and intracellular Ca2+ mobilization in a Gαq inhibitor- and Gαi/o inhibitor-sensitive manner. Upon activation by 26RFa, DrGPR103A and B evoked ERK1/2 phosphorylation and underwent internalization. Further functional determination also revealed that zebrafish kisspeptin-1 exhibited a slight potency for activating both DrGPR103A and B, and vice versa, zebrafish 26RFa also showed some activity at zebrafish GPR54A and B. Our findings provided evidence that zebrafish GPR103A and B are two functional Gαq- and Gαi/o-dually coupled receptors for 26RFa, enabling the further elucidation of the endocrinological roles of zebrafish 26RFa signaling system in the regulation of physiological activities. 相似文献