首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proline residues play a special role in shaping the secondary and tertiary structures of proteins. Many of these aspects have been studied in great detail. Current interest lies in elucidating the structure of right-handed alpha-helical fragments which contain proline in the middle of the helix. Such structures play an important role in membrane proteins and in the tight packing of globular proteins. Analysis of several crystal structures and energy minimization using flexible geometry have elucidated the nature of the bend produced by proline in the right-handed alpha-helical structure. Molecular dynamics (MD) simulation studies are ideally suited to characterize rigidity or flexibility in different parts of the molecule and can also give an idea of various conformations of the molecule which can exist at a given temperature. Hence, MD studies on Ace-(Ala)6-Pro-(Ala)3-NHMe have been carried out for 100 ps after equilibration and the resulting trajectories have been analyzed. Information regarding the average values, r.m.s. fluctuations of internal parameters and the time spent in different conformations are discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.  相似文献   

2.
Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme.  相似文献   

3.
Although it is commonly known as a helix breaker, proline residues have been found in the alpha-helical regions of many peptides and proteins. The antimicrobial peptide gaegurin displays alpha-helical structure and has a central proline residue (P14). The structure and activity of gaegurin and its alanine derivative (P14A) were determined by various spectroscopic methods, restrained molecular dynamics, and biological assays. Both P14 and P14A exhibited cooperative helix formation in solution, but the helical stability of P14 was reduced substantially when compared to that of P14A. Chemical-shift analysis indicated that both of the peptides formed curved helices and that P14 showed diminished stability in the region around the central proline. However, hydrogen-exchange data revealed remarkable differences in the location of stable amide protons. P14 showed a stable region in the concave side of the curved helix, while P14A exhibited a stable region in the central turn of the helix. The model structure of P14 exhibited a pronounced kink, in contrast to the uniform helix of P14A. Both peptides showed comparable binding affinities for negatively charged lipids, while P14 had a considerably reduced affinity for a neutral lipid. With its destabilized alpha-helix, P14 exhibited greater antibacterial activity than did P14A. Hence, electrostatic interaction between helical peptides and lipid membranes is believed to be the dominant factor for antibacterial activity. Moreover, helical stability can modulate peptide binding to membranes that is driven by electrostatic interactions. The observation that P14 is a more potent antibacterial agent than P14A implies that the helical kink of P14 plays an important role in the disruption of bacterial membranes.  相似文献   

4.
Proline residues are commonly found in putative transbilayer helices of many integral membrane proteins which act as transporters, channels and receptors. Intramembranous prolines are often conserved between homologous proteins. It has been suggested that such intrahelical prolines provide liganding sites for cations via exposure of the backbone carbonyl oxygen atoms of residues i-3 and i-4 (relative to the proline). Molecular modelling studies have been carried out to evaluate this proposal. Bundles of parallel proline-kinked helices are considered as simplified models of ion channels. The energetics of K+ ion-helix bundle interactions are explored. It is shown that carbonyl oxygens exposed by the proline-induced kink and at the C-terminus of the helices may provide cation-liganding sites. 'Hybrid' bundles of antiparallel helices, only some of which contain proline residues, are considered as models of transport proteins. Again, proline-exposed carbonyl oxygens are shown to be capable of liganding cations. The roles of alpha-helix dipoles and of the geometry of helix packing are considered in relation to cation-bundle interactions. Implications with respect to modelling of ion channel and transport proteins are discussed.  相似文献   

5.
Proline residues are known to perturb the structure of helices by introducing a kink between the segments preceding and following the proline residue. The distortion of the helical structure results from the avoided steric clash between the ring of the proline at position (i) and the backbone carbonyl at position (i - 4), as well as the elimination of helix backbone H-bonds for the carbonyls at positions (i - 3) and (i - 4). Both the departure from the ideal helical pattern and the reduction in H-bond stabilization contribute to the observed flexibility of a proline-containing alpha-helix. The special local flexibility of the proline kink can confer an important role on the proline-containing helix in the conformational changes related to the function of the protein. As a useful tool in determining and evaluating the role of proline-induced flexibility and distortions in protein function, we present here a protocol to quantify the geometry of the distortion introduced in helices by prolines both as a time-averaged value and for individual 'snapshots' along a molecular dynamics simulation.  相似文献   

6.
Involucrin plays an important role in the lipid and protein compound envelopes of mammalian epidermal corneocytes. In the present study, model peptides containing the consensus repeating units PEQQEGQLEL and LEQQEGQLEH, found in the central region of human involucrin, were studied by circular dichroism spectroscopy, molecular modeling, and energy minimization. These peptides have intrinsic alpha-helix-forming properties as indicated by their circular dichroic spectra obtained in the presence of 2,2,2-trifluoroethanol. Peptide (LEQQEGQLEH)(3) had an alpha-helix content of 100% in 100% 2, 2,2-trifluoroethanol at 0 degrees C. The energy-minimized alpha-helix showed that only 50% of the glutamate side chains may be available for the attachment of lipids. However, when a 3(10)-helix was assumed for the GQL or GQLE residues in LEQQEGQLEH, all of the glutamate side chains were arrayed on one face of the helix, and all of the glutamine side chains were arrayed on the opposite face. A similar result was obtained when the nonhelical part of PEQQEGQLEL was assumed to contain a beta-turn III, which is equivalent to a short portion of 3(10)-helix. The results of this study suggest that when the central segment of human involucrin is predominantly alpha-helical, accompanied by short 3(10)-helical segments, the protein can function as a scaffold for the attachment of both lipids and proteins.  相似文献   

7.
An explanation in terms of conformational energies is provided for the observed nearly exclusive preference of the beta alpha beta structure for forming a right-handed, rather than a left-handed, crossover connection. Conformational energy computations have been carried out on a model beta alpha beta structure, consisting of two six-residue Val beta-strands and of a 12-residue Ala alpha-helix, connected by two flexible four-residue Ala links to the strands. The energy of the most favorable right-handed crossover is 15.51 kcal/mol lower than that of the corresponding left-handed cross-over. The right-handed crossover is a strain-free structure. Its energy of stabilization arises largely from the interactions of the two beta-strands with one another and with the alpha-helix. On the other hand, the left-handed crossover is either disrupted after energy minimization or it remains conformationally strained, as indicated by an energetically unfavorable left twisting of the beta-sheet and by the presence of high-energy local residue conformations. In the energetically most favorable right-handed crossover, the right twisting of the beta-sheet and its manner of interacting with the alpha-helix are identical with those computed earlier for isolated beta-sheets and for packed alpha/beta structures. This result supports a proposed principle that it is possible to account for the main features of frequently occurring structural arrangements in globular proteins in terms of the properties of their component structural elements.  相似文献   

8.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

9.
A new approach to predicting protein standard conformations is suggested. The idea consists in modeling by molecular mechanics tools a continuous alpha-helical conformation for the whole protein. The profile of energy along the model alpha-helix reveals minima corresponding to real alpha-helical segments in the native protein. The 3/10-helices and beta-turns including a local alpha-helical conformation may be detected as well. All alpha-helical segments in the test sample are delineated; mean residue by residue accuracy Q(3alpha) is 79%. This non-statistical approach can shed light on the physical grounds of alpha-helix formation.  相似文献   

10.
546 NOESY cross-peak volumes were measured in the two-dimensional NOESY spectrum of proteolytic fragment 163-231 of bacterioopsin in organic solution. These data and 42 detected hydrogen bonds were applied for determining the peptide spatial structure. The fold of the polypeptide chain was determined by local structure analysis, a distance geometry approach and systematic search for energetically allowed side-chain rotamers which are consistent with experimental NOESY cross-peak volumes. The effective rotational correlation time of 6 ns for the molecule was evaluated from optimization of the local structure to meet NOE data and from the dependence on mixing time of the NiH/Ci alpha H cross-peak volumes of the residues in alpha-helical conformation. The resulting structure has two well defined alpha-helical regions, 168-191 and 198-227, with root-mean-square deviation 44 pm and 69 pm, respectively, between the backbone atoms in 14 final energy refined conformations. The alpha-helices correspond to transmembrane segments F and G of bacteriorhodopsin. The segment F contains proline 186, which introduces a kink of about 25 degrees with a disruption of the hydrogen bond with the NH group of the following residue. The segments are connected by a flexible loop region 192-197. Torsion angles chi 1 are unequivocally defined for 62% of side chains in the alpha-helices but half of them differ from electron cryo-microscopy (ECM) model of bacteriorhodopsin, apparently because of the low resolution of ECM. Nevertheless, the F and G segments can be packed as in the ECM model and with side-chain conformations consistent with all NMR data in solution.  相似文献   

11.
A theoretical study to identify the conformational preferences of lysine-based oligopeptides has been carried out. The solvation free energy and free energy of ionization of the oligopeptides have been calculated by using a fast multigrid boundary element method that considers the coupling between the conformation of the molecule and the ionization equilibria explicitly, at a given pH value. It has been found experimentally that isolated alanine and lysine residues have somewhat small intrinsic helix-forming tendencies; however, results from these simulations indicate that conformations containing right-handed alpha-helical turns are energetically favorable at low values of pH for lysine-based oligopeptides. Also, unusual patterns of interactions among lysine side chains with large hydrophobic contacts and close proximity (5-6 A) between charged NH3+ groups are observed. Similar arrangements of charged groups have been seen for lysine and arginine residues in experimentally determined structures of proteins available from the Protein Data Bank. The lowest-free-energy conformation of the sequence Ac-(LYS)6-NMe from these simulations showed large pKalpha shifts for some of the NH3+ groups of the lysine residues. Such large effects are not observed in the lowest-energy conformations of oligopeptide sequences with two, three, or four lysine residues. Calculations on the sequence Ac-LYS-(ALA)4-LYS-NMe also reveal low-energy alpha-helical conformations with interactions of one of the LYS side chains with the helix backbone in an arrangement quite similar to the one described recently by (Proc. Natl. Acad. Sci. U.S.A. 93:4025-4029). The results of this study provide a sound basis with which to discuss the nature of the interactions, such as hydrophobicity, charge-charge interaction, and solvent polarization effects, that stabilize right-handed alpha-helical conformations.  相似文献   

12.
Secondary-structure-prediction algorithms have been used to find the segments of beta-lactoglobulin sequence most likely to fit the circular dichroism assignment of 15% alpha-helix, 50% beta-sheet, and 15-20% reverse turn. A number of segments may have an alpha-helical conformation but the most prominent region of alpha-helix is from residue 129 to 143. A further probable alpha-helix segment is residues 65-76. The number of residues predicted to occur in segments of beta-sheet structure is less than expected. However, the most likely segments are for residues 1-6, 11-16, 39-45, 80-85, 92-96, 101-107, 117-123, and 145-151. Predicted reverse-turn tetrapeptides are residues 7-10, 49-52, 61-64, 88-91, and 112-115. These predicted secondary structures are consistent with the low-resolution structure of the molecule determined by X-ray diffraction studies.  相似文献   

13.
Detailed biophysical studies have been carried out on echistatin, a member of the disintegrin family of small, cysteine-rich, RGD-containing proteins, isolated from the venom of the saw-scaled viper Echis carinatus. Analysis of circular-dichroism spectra indicates that, at 20 degrees C, echistatin contains no alpha-helix but contains mostly beta-turns and beta-sheet. Two isobestic points are observed as the temperature is raised, the conformational changes associated with that observed between 40 degrees C and 72 degrees C being irreversible. Raman spectra also indicate considerable beta-turn and beta-sheet (20%) structure and an absence of alpha-helical structure. Three of the four disulphide bridges are shown to be in an all-gauche conformation, while the fourth adopts a trans-gauche-gauche conformation. The 1H-NMR spectrum of echistatin has been almost fully assigned. A single conformation was observed at 27 degrees C with the four proline residues adopting only the trans conformation. A large number of backbone amide protons were found to exchange slowly, but no segments of the backbone were found to be in either alpha-helical or beta-sheet conformation. A number of turns could be characterised. An irregular beta-hairpin contains the RGD sequence in a mobile loop at its tip. Two of the four disulphide cross-links have been identified from the NMR spectra. The data presented in this paper will serve to define the structure of echistatin more closely in subsequent studies.  相似文献   

14.
Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed structural preferences. The energetically most favored packing arrangement is similar to the right-handed beta alpha beta crossover structure that is observed in proteins; thus, the preference for this connectivity arises in large measure from this energetically favorable interaction.  相似文献   

15.
Proline-induced distortions of transmembrane helices   总被引:14,自引:0,他引:14  
Proline residues in the transmembrane (TM) alpha-helices of integral membrane proteins have long been suspected to play a key role for helix packing and signal transduction by inducing regions of helix distortion and/or dynamic flexibility (hinges). In this study we try to characterise the effect of proline on the geometric properties of TM alpha-helices. We have examined 199 transmembrane alpha-helices from polytopic membrane proteins of known structure. After examining the location of proline residues within the amino acid sequences of TM helices, we estimated the helix axes either side of a hinge and hence identified a hinge residue. This enabled us to calculate helix kink and swivel angles. The results of this analysis show that proline residues occur with a significant concentration in the centre of sequences of TM alpha-helices. In this location, they may induce formation of molecular hinges, located on average about four residues N-terminal to the proline residue. A superposition of proline-containing TM helices structures shows that the distortion induced is anisotropic and favours certain relative orientations (defined by helix kink and swivel angles) of the two helix segments.  相似文献   

16.
The secondary structure of human fibrinogen and its plasmin-fragments have been studied by FTIR spectroscopy. The quantitative results for fibrinogen are in good agreement with previous studies using circular dichroism spectroscopy. After treatment of fibrinogen with plasmin in buffer containing Ca2+, two major fragments are produced: fragment E (Mw 45,000) and fragment D (Mw 100,000). Fragment E is shown to contain 50% alpha-helical values, attributed to its coiled-coil portions, and minor beta-strands and turn structures. Its deuteration gives evidence of the presence of solvent-exposed alpha-helical structures. On the other hand, fragment D contains a distribution of secondary structure values of 35% alpha-helix, 29% beta-sheet segments and 17% turn structures. Fragment D itself has two domains: a portion of the original coiled-coil and also a thermally labile globular domain. The coiled-coil portion (Mw 27,000) was isolated and showed a high alpha-helical content (around 70%). The globular domain is estimated to be rich in beta-sheet structures. The spectra of fibrin clots formed in Ca(2+)-containing buffer have a lower amide I/amide II ratio than fibrinogen spectra, which is interpreted as being due to aggregation.  相似文献   

17.
Ampullosporin A is a 15-mer peptaibol type polypeptide that induces pigment formation by the fungus Phoma destructiva, forms voltage-dependent ion channels in membranes and exhibits hypothermic effects in mice. The structure of ampullosporin A has been determined by x-ray crystallography. This is the first three-dimensional (3D) structure of the peptaibol subfamily SF6. From the N-terminus to residue 13 the molecule adopts an approximate right-handed alpha-helical geometry, whereas a less regular structure pattern with beta-turn characteristics is found in the C-terminus. Even though ampullosporin A does not contain a single proline or hydroxyproline it is significantly bent. It belongs to both the shortest and the most strongly bent peptaibol 3D structures. The straight structure part encompasses residues Ac-Trp(1)-Aib(10) and is thus less extended than the alpha-helical subunit. The 3D structure of ampullosporin A is discussed in relation to other experimentally determined peptaibol structures and in the context of its channel-forming properties. As a part of this comparison a novel bending analysis based on a 3D curvilinear axis describing the global structural characteristics has been proposed and applied to all 3D peptaibol structures. A sampling of 2500 conformations using different molecular dynamics protocols yields, for the complete ampullosporin A structure, an alpha-helix as the preferred conformation in vacuo with almost no bend. This indicates that solvent or crystal effects may be important for the experimentally observed peptide backbone bending characteristics of ampullosporin A.  相似文献   

18.
Fourier transform infrared spectroscopic studies of Ca(2+)-binding proteins   总被引:2,自引:0,他引:2  
M Jackson  P I Haris  D Chapman 《Biochemistry》1991,30(40):9681-9686
The secondary structures of calmodulin and parvalbumin are well established from X-ray diffraction and nuclear magnetic resonance spectroscopic studies, which indicate that these proteins are predominantly alpha-helical in character. Recent infrared studies have nevertheless suggested that the helical structures present in these proteins in solution are not the standard alpha-helix but rather some kind of distorted helices [Trewhella, J., et al. (1989) Biochemistry 28, 1294]. The evidence for this was the unusually low amide I frequency for calmodulin and troponin C in 2H2O solution. The studies presented here, however, suggest that the helical structures in these proteins are not significantly distorted, for two reasons. First, distorted helical structures have weaker hydrogen bonds than the standard alpha-helix and would therefore be expected to absorb at a higher rather than a lower frequency. Second, distorted helical structures would absorb at an unusual frequency in H2O solutions which is not the case for the proteins studied here. The band frequency of these proteins is observed to occur at a frequency observed with other proteins known to contain predominantly alpha-helical structures. Quantitative analysis of the FT-IR spectra of calmodulin (67% alpha-helix) and parvalbumin (68% alpha-helix) in H2O in the presence of Ca2+ gives helical contents similar to those reported by X-ray studies. This raises the question as to why these proteins in H2O show a normal frequency for the presence of alpha-helical structures and an abnormal frequency in 2H2O. Addition of deuterated glycerol to the proteins in 2H2O solutions results in a significant shift of absorbance to higher frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.  相似文献   

20.
Abstract

Structural modelling techniques using energy minimization and molecular dynamics have been employed to generate kinked models for the solution structure of two DNA tridecamer sequences containing inserted adenosines: d(CGCAGAATTCGCG)2 and d(CGCAGAGCTCGCG)2. These models are consistent with NMR studies of these sequences in solution. The overall shapes of the two models are similar, consisting of three B-DNA sections: two outer segments on the same side of the central portion, with the additional adenosines acting as wedges to kink the structure. An alternative scheme for the hydrogen bond pairing at the kink site is suggested as a way for the additional adenosines to be stabilized in the duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号