首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the diversity of dioxygenase genes involved in polycyclic aromatic hydrocarbon (PAH)-degradation, a total of 32 bacterial strains were isolated from surface mangrove sediments, from the genera Mycobacterium, Sphingomonas, Terrabacter, Sphingopyxis, Sphingobium and Rhodococcus. Two sets of PCR primers were constructed to detect the nidA-like and nahAc-like sequences of the alpha subunit of the PAH ring-hydroxylating dioxygenase. PCR amplified the DNA fragments from all Gram-positive bacteria by using nidA-like primers and from all Gram-negative bacteria, except two, by using nahAc-like primers. The nidA-like primers showed three subtypes of nidA-like gene: (i) fadA1, clustering with nidA3 from M. vanbaalenii PYR-1, (ii) nidA, clustering with nidA from PYR-1, and (iii) fadA2 clustering with dioxygenase from Arthrobacter sp. FB24. The amplicons detected by nahAc-like primers had high sequence homologies to phnA1a from Sphingomonas sp. CHY-1 and were amplifiable from 8 of the 16 Gram-negative isolates. The primer also generated amplicons that had a 32-36% similarity to phnA1a and 53-93% identity to p-cumate dioxygenase. These results suggest that the nidA-like and nahAc-like genes are prevalent in the PAH-degrading bacteria and that they are useful for determining the presence of PAH-dioxygenase genes in environmental samples.  相似文献   

2.
Biodegradation of UV-irradiated anthracene, pyrene,benz[a]anthracene,and dibenz[a,h]anthracene was comparedto that of the non-irradiated samples, individuallyand in synthetic mixtures with enrichment cultures.Combined treatment was repeated for individual anthraceneand for the PAH mixture with Sphingomonas sp.strain EPA 505 and Sphingomonas yanoikuyae.Enrichment culture studies were performed on the PAHmixtures in the presence of the main photoproduct ofanthracene, pure 9,10-anthracenedione. Photochemicallypretreated creosote solutions were also subjected tobiodegradation and the results were compared tothose of the non-irradiated solutions. The primaryinterest was on 16 polycyclic aromatic hydrocarbons(PAHs) listed as priority pollutants by European Union(EU) and the United States Environmental ProtectionAgency (USEPA). Irradiation accelerated thebiodegradation onset for anthracene, pyrene, andbenz[a]anthracene when they were treatedindividually. The biodegradation of irradiatedpyrene started with no lag phase andwas complete by 122 h whereas biodegradation of thenon-irradiated sample had a lag of 280 h andresulted in complete degradation by 720 h. Biodegradation ofPAHs was accelerated in synthetic mixtures, especiallyin the presence of pure 9,10-anthracenedione.In general, irradiation had no effect on the biodegradation of PAHsincubated in synthetic mixtures or with pure cultures. Undercurrent experimental conditions, the UV-irradiation invariablyreduced the biodegradation of PAHs in creosote. Based onthe results of the present and previous photochemical-biologicalstudies of PAHs, the influence of the photochemical pretreatmenton the biodegradation is highly dependent on the compoundsbeing treated and other process parameters.  相似文献   

3.
We characterized bacteria from contaminated aquifers for their ability to utilize aromatic hydrocarbons under hypoxic (oxygen-limiting) conditions (initial dissolved oxygen concentration about 2 mg/l) with nitrate as an alternate electron acceptor. This is relevant to current intense efforts to establish favorable conditions forin situ bioremediation. Using samples of granular activated carbon slurries from an operating groundwater treatment system, we isolated bacteria that are able to use benzene, toluene, ethylbenzene, orp-xylene as their sole source of carbon under aerobic or hypoxic-denitrifying conditions. Direct isolation on solid medium incubated aerobically or hypoxically with the substrate supplied as vapor yielded 103 to 105 bacteria ml–1 of slurry supernatant, with numbers varying little with respect to isolation substrate or conditions. More than sixty bacterial isolates that varied in colony morphology were purified and characterized according to substrate utilization profiles and growth condition (i.e., aerobic vs. hypoxic) specificity. Strains with distinct characteristics were obtained using benzene compared with those isolated on toluene or ethylbenzene. In general, isolates obtained from direct selection on benzene minimal medium grew well under aerobic conditions but poorly under hypoxic conditions, whereas many ethylbenzene isolates grew well under both incubation conditions. We conclude that the conditions of isolation, rather than the substrate used, will influence the apparent characteristic substrate utilization range of the isolates obtained. Also, using an enrichment culture technique, we isolated a strain ofPseudomonas fluorescens, designated CFS215, which exhibited nitrate dependent degradation of aromatic hydrocarbons under hypoxic conditions.Abbreviations BTEX benzene, toluene, ethylbenzene, andp-xylene - HPLC high performance liquid chromatography - GAC granular activated carbon  相似文献   

4.
Aims:  A rapid procedure was developed to screen for bacteria that are able to grow on polycyclic aromatic hydrocarbons (PAHs).
Methods and Results:  A drop of ethyl ether-dissolved PAH is spread on a sterilized cellulose acetate/nitrate filter lying on the top of a mineral salts agarose plate. After the evaporation of ethyl ether, a serially diluted sample is spread over the filter and incubated. Subsequently, the PAH degrading bacteria can be counted and isolated.
Conclusions:  This procedure is a simple method for screening bacterial isolates for the ability to grow with PAHs.
Significance and Impact of the Study:  This technique is rapid to screen and/or count PAH-degrading bacteria and is also used to streak cultivation without disrupting the PAH layer on plate.  相似文献   

5.
土壤中多环芳烃的微生物降解及土壤细菌种群多样性   总被引:4,自引:0,他引:4  
利用室内模拟方法,研究中、低浓度多环芳烃(PAHs)污染土壤的微生物修复效果,阐明土壤微生物(接种和土著)与PAHs降解的关系.结果表明:投加PAHs高效降解菌可以促进土壤中PAHs的降解,2周内效果显著;典型PAHs降解的难易程度依据为:菲<蒽<芘<苯并(a)芘和屈;细菌种群丰度和多样性均与PAHs降解呈负相关关系,同一处理细菌种群结构随时间变化不大.对于中、低浓度PAHs原位污染土壤,增强土著菌的活性是提高土壤PAHs降解率的有效途径之一.  相似文献   

6.
Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography–mass spectrometry. Twenty samples were collected from the surface sediments of Haizhou Bay in this survey. This research aimed to identify the PAHs' contamination level, composition pattern, pollution sources, and assess the ecological risk of PAHs. The results showed that the sum of PAH concentrations ranged from 116.6 ng g?1 to 2414.9 ng g?1 (mean: 662.42 ng g?1), which is higher than the reported values for different wetlands worldwide. Three- and four-ring PAHs (accounts for more than 70% of the total PAH content) were predominant in the wetland sediment. The PAHs source distribution in the surface sediments were determined using diagnostic ratio and PCA/MLR. Consequently, multiple PAHs sources were found. Of the total PAH, 79.25% was derived from vehicular emission, 20.75% from coal combustion. The effect range low/effect range median (ERL/ERM) values indicated a low toxicity risk level. However, the fluoranthene concentrations exceeded the ERL level, and even the ERM level, in some stations. The mean effects range–median quotient (M-ERM-Q) suggests a low ecological risk for the PAHs in the sediments.  相似文献   

7.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

8.
大西洋洋中脊深海多环芳烃降解菌群的优势菌分析   总被引:2,自引:1,他引:2  
摘要:【目的】为了分析大西洋洋中脊深海海水及表层沉积物中多环芳烃(PAHs)降解菌群中的优势菌。【方法】采用富集培养法和平板涂布法从深海样品中分离可培养细菌及PAHs降解菌。通过16S rRNA基因测序完成系统发育分析。采用变性梯度凝胶电泳(DGGE)及DNA测序分析降解菌群中的优势菌。【结果】总共分离到16株细菌,包括一株PAHs降解菌Novosphingobium sp. 4D。系统发育分析发现,可培养细菌中两个最大的类群分别与Alcanivorax dieselolei NO1A(5/16)和Tistrella mobilis TISTR 1108T(5/16)亲缘关系最近。DGGE结果表明,在菌群MC2D中菌株4L(以及4M、4N, Alcanivorax dieselolei NO1A, 99.21%)、4D(Novosphingobium pentaromativorans US6-1T,97.07%)和4B(以及4E、4H、4K,Tistrella mobilis TISTR 1108T,>99%)是降解菌群中的优势菌。而降解菌群MC3CO中的优势菌是菌株5C(以及5H,Alcanivorax dieselolei NO1A,>99%)、条带5-8代表的未培养菌株(Novosphingobium aromaticivorans DSM 12444T,99.41%)、5J(Tistrella mobilis TISTR 1108T,99.52%)和5F(以及5G,Thalassospira lucentensis DSM 14000T,<97%)。【结论】本研究发现在大西洋洋中脊深海海水及表层沉积物中Alcanivorax、Novosphingobium、Thalassospira、Tistrella属的细菌是PAHs降解菌群中的优势菌,其中的主要降解菌是Novosphingobium属的细菌。  相似文献   

9.
Biodegradation of polycyclic aromatic hydrocarbons   总被引:67,自引:0,他引:67  
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.  相似文献   

10.
The impact of several mobilizing agents (MAs) (i.e., soybean oil, Tween-20, Tween-80, olive-oil mill wastewaters, and randomly methylated beta-cyclodextrins) on the degradation performances of the white-rot fungi Irpex lacteus and Pleurotus ostreatus was comparatively assessed in a soil spiked with a mixture of seven polycyclic aromatic hydrocarbons (PAHs). Among the different MAs, soybean oil best supported the growth of both fungi that was twice that observed in soil in the absence of MAs. In addition, soybean oil positively affected PAH degradation by both fungi. In this case, the total weight of organic contaminants (TWOC) was lower than that in the absence of MAs (57.7 vs. 201.3 and 26.3 vs. 160.4 mg kg(-1) with I. lacteus and P. ostreatus, respectively). On the other hand, the number of cultivable heterotrophic bacteria was significantly lower in the soil with soybean oil augmented with either one of the two fungi (5.21 vs. 8.71 and 0.22 vs. 0.51 x 10(7) CFU g(-1) soil with I. lacteus and P. ostreatus, respectively). The effect of soybean oil was confirmed by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes that showed a general decrease in biodiversity. The impact of the other MAs on bacterial diversity was either slightly negative or positive in incubation controls. Both richness and Shannon-Weaver index decreased upon treatment with P. ostreatus. Moreover, with this fungus the composition of the indigenous bacteria was not significantly affected by the type of MA used. By contrast, both indices increased in soil with I. lacteus in the presence of randomly methylated beta-cyclodextrins (39 vs. 33 and 1.43 vs. 1.26, respectively) and soybean oil (19 vs. 5 and 1.01 vs. 0.65, respectively).  相似文献   

11.
一株多环芳烃降解菌及其在多种强化体系中降解菲的潜力   总被引:1,自引:0,他引:1  
多环芳烃是一类普遍的环境污染物,因其潜在的环境暴露和对人类健康的危害而备受关注。从石化品污染土壤样品中分离到一株以菲为唯一碳源和能源的中温菌 (15–37 ℃,最佳30 ℃) 菌株CFP312。经菌落和菌体形态观察、生理生化测试和16S rRNA同源性分析鉴定属于莫拉氏菌Moraxella sp.。这是Moraxella属中多环芳烃降解菌种的首次报道。研究表明,当菲浓度为400 mg/L时,在48 h和60 h时,菲的去除率分别为84%和90%,降解速率达到1.21、1.29 mg/(L·h)。在菲的降解过程中,检测到3,4-二氢-3,4-二羟基菲为中间产物。据此推断降解菌通过在菲的3,4位进行双加氧完成其生物降解的第一个关键步骤。在水-有机溶剂两相分配体系、胶束水溶液体系和浊点体系中检测了降解菌对不同的菲强化降解体系的适应性。结果表明,降解菌对不同降解体系都表现出了良好的适应性。另外,降解菌可在泥浆-水体系中快速降解污染土壤中的多环芳烃菲,表明其在环境修复方面具有很大的应用潜力。  相似文献   

12.
Six polycyclic aromatic hydrocarbons [naphthalene, anthracene, phenanthrene, pyrene, chrysene and benzo(a)-pyrene] were detected in soil receiving effluents from an oil refinery. Biodegradation studies revealed a time-dependent disappearance of these polycyclic aromatic hydrocarbons when they were added to soil samples: naphthalene disappeared completely in 60 days, whereas phenanthrene, anthracene, pyrene, chrysene and benzo(a)pyrene decreased by 87%, 34%, 21%, 5% and 40%, respectively, in 120 days.B.T. Ashok and J. Musarrat were and S. Saxena is with the Interdisciplinary Biotechnology Unit, A.M.U., Aligarh-202002, Uttar Pradesh, India. K.P. Singh is with the Environmental Chemistry Section, Industrial Toxicology Research Centre, M.G. Road, Lucknow-226001, Uttar Pradesh, India. B.T. Ashok is now with the Department of Biochemistry, J.N. Medical College, A.M.U., Aligarh-202002, Uttar Pradesh, India. J. Musarrat is now with the Department of Radiology and Blochemistry Program. The Ohio State University, Columbus, OH 43210, USA.  相似文献   

13.
【目的】从污染土壤中分离筛选一株多环芳烃降解菌,并探究其与Pseudomonas aeruginosa B6-2构建的混菌体系对菲-镉复合污染的修复效能,以及微生物代谢特性对不同镉浓度赋存的响应特性,以期为复合污染的生物修复提供优良菌株资源及应用技术参考。【方法】采用富集驯化、筛选纯化方法得到一株多环芳烃降解菌,通过生理生化特征和16S rRNA基因序列分析进行鉴定。利用高效液相色谱法和电感耦合等离子体质谱法评估不同镉浓度赋存下各反应体系对菲和镉的去除效能;通过菌体细胞形态的扫描电镜观测及菌株代谢活性检测,探讨镉胁迫对菲生物降解过程的影响机制。【结果】筛选得到一株具有重金属耐受性和多环芳烃高效降解菌SZ-3,经鉴定为节杆菌属;降解菌协同体系(M)具有良好的菲降解效能和抗镉胁迫优势。镉胁迫浓度为0.5、10 mg/L时,M对菲和镉的去除率分别高于85%、80%;镉胁迫浓度为25、50 mg/L时,2种污染物的去除率均大于65%。扫描电镜分析表明,镉胁迫导致菌体表面粗糙且出现不同程度变形,菌体间黏附性和聚集性提高。反应周期内,邻苯二酚1,2-双加氧酶活性与电子传递体系活性随镉浓度增加而降低,两者变化与菲降解速率变化一致。【结论】Arthrobacter sp.SZ-3是一株PAHs高效降解菌,能与Pseudomonas aeruginosa B6-2协同高效修复菲-镉复合污染,随着初始镉胁迫浓度增加,混菌协同对目标污染物去除的优势显著。  相似文献   

14.
15.
Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methylnaphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l−1 Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate at which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, strain B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium. Journal of Industrial Microbiology & Biotechnology (2001) 26, 283–289. Received 25 September 2000/ Accepted in revised form 08 February 2001  相似文献   

16.
Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala   总被引:3,自引:0,他引:3  
Pichia anomala 2.2540, isolated from soil contaminated by crude oil, degraded naphthalene, dibenzothiophene, phenanthrene and chrysene, both singly and in combination. The yeast degraded 4.5 mg naphthalene l(-1) within 24 h. Phenanthrene was degraded after a lag of 24 h. When a mixture of all four polycyclic aromatic hydrocarbons was treated at either 0.1-1.6 mg l(-1) or 3.1-5.3 mg l(-1), naphthalene was completely degraded first within 24 h, followed by phenanthrene and dibenzothiophene after 48 h. Chrysene, which remained in the mixture even after 96 h, could be degraded along with naphthalene. Chrysene at 0.7 and 1 mg l(-1), in the presence of 4.3 and 65 mg naphthalene l(-1), respectively, was removed within 96 h.  相似文献   

17.
18.
AIM: The aim of this study was to further characterize a bacterial culture (VUN 10,010) capable of benzo[a]pyrene cometabolism. METHODS AND RESULTS: The bacterial culture, previously characterized as a pure culture of Stenotrophomonas maltophilia (VUN 10,010), was found to also contain another bacterial species (Mycobacterium sp. strain 1B), capable of degrading a similar range of PAH substrates. Analysis of its 16S rRNA gene sequence and growth characteristics revealed the strain to be a fast-growing Mycobacterium sp., closely related to other previously isolated PAH and xenobiotic-degrading mycobacterial strains. Comparison of the PAH-degrading characteristics of Mycobacterium sp. strain 1B with those of S. maltophilia indicated some similarities (ability to degrade phenanthrene and pyrene), but some differences were also noted (S. maltophilia able to degrade fluorene, but not fluoranthene, whereas Mycobacterium sp. strain 1B can degrade fluoranthene, but not fluorene). Unlike the S. maltophilia culture, there was no evidence of benzo[a]pyrene degradation by Mycobacterium sp. strain 1B, even in the presence of other PAHs (ie pyrene) as co-metabolic substrates. Growth of Mycobacterium sp. strain 1B on other organic carbon sources was also limited compared with the S. maltophilia culture. CONCLUSIONS: This study isolated a Mycobacterium strain from a bacterial culture capable of benzo[a]pyrene cometabolism. The Mycobacterium strain displays different PAH-degrading characteristics to those described previously for the PAH-degrading bacterial culture. It is unclear what role the two bacterial strains play in benzo[a]pyrene cometabolism, as the Mycobacterium strain does not appear to have endogenous benzo[a]pyrene degrading ability. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the isolation and characterization of a novel PAH-degrading Mycobacterium strain from a PAH-degrading culture. Further studies utilizing this strain alone, and in combination with other members of the consortium, will provide insight into the diverse roles different bacteria may play in PAH degradation in mixed cultures and in the environment.  相似文献   

19.
20.
一株高浓度多环芳烃降解菌的鉴定和降解特性   总被引:1,自引:0,他引:1  
采用选择性富集培养方法,从沈抚灌区土壤中分离得到多环芳烃(PAHs)高效降解菌NI2,应用此降解菌制备固定化菌剂,修复焦化厂内高浓度PAHs污染土壤,并通过生理生化和16S rDNA测序进行微生物鉴定.经过30 d的降解实验,菌N12对污染土壤中各PAH的去除率>66%,总去除率为80%.生理生化和16S rDNA测序分析表明,分离得到的菌株N12为分支杆菌属(Mycobacterium sp.),该菌具有与其他分枝杆菌同源的双加氧酶基因nidA和pdoA2.结果表明,从土壤中筛选获得的分枝杆菌可以修复高浓度PAHs污染工业土壤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号