首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The hexameric regulatory protein ArgR formed by arginine-mediated dimerization of identical trimers governs the expression of genes required for arginine metabolism and some other genes in mesophilic and moderately thermophilic bacteria. We have cloned the argR gene from two hyperthermophilic bacteria of the genus Thermotoga. The two-domain ArgR proteins encoded by T. neapolitana and T. maritima share a low degree of sequence similarity with other bacterial arginine repressors. The ArgR protein from T. neapolitana binds to an operator located just upstream of its coding sequence and, therefore, the argR gene may be autoregulated. The protein has extremely high intrinsic thermostability and tolerance to urea. Moreover, its binding to target DNA increases the melting temperature by approximately 15° C. The formation of oligomeric ArgR-DNA complexes is a function of protein concentration, with hexameric complexes being favoured at higher concentrations. In the presence of arginine the hyperthermophilic ArgR protein binds to its own operator, argRo, only by forming hexamer ArgR-DNA complexes, whereas both trimer-DNA and hexamer-DNA complexes are detected in the absence of arginine. However, the affinity of T. neapolitana ArgR for DNA has been found to be higher for a mixture of trimers and non-bound hexamers than for arginine-bound hexamers. Our data indicate that genes for arginine biosynthesis are clustered in a putative operon, which could also be regulated by the ArgR protein, in the hyperthermophilic host. Received: 19 July 1999 / Accepted: 4 November 1999  相似文献   

3.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

4.
Summary In Serratia marcescens Sr41, l-canavanine was demonstrated to be a weak cell growth inhibitor in minimal medium containing glucose as the sole carbon source. The inhibition of cell growth was enhanced by changing the carbon source from glucose to l-glutamic acid. An arginine regulatory mutant (i.e., argR mutant) in which formation of l-arginine biosynthetic enzymes was genetically derepressed was isolated by selecting for l-canavanine resistance on the glutamate medium. Furthermore, an l-arginine-producing strain was constructed by introducing the mutation leading to feedback-resistant N-acetylglutamate synthase into the argR mutant. The resulting transductant produced about 40 g/l of l-arginine, whereas the wild strain produced no l-arginine and the argR mutant only 3 g/l.  相似文献   

5.
6.
Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by 39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The overall product yield was about 24 mol% (0.12 g/g of glucose).  相似文献   

7.
[目的] 研究精氨酸代谢调控蛋白ArgR对嗜热链球菌胞外多糖(EPS)合成的调控作用。[方法] 利用大肠杆菌异源表达嗜热链球菌ArgR蛋白,通过尿素变性-复性和Ni2+亲和层析纯化。采用凝胶电泳迁移(EMSA)和生物膜层干涉(BLI)分析ArgR和eps基因簇中PepsA启动子的相互作用和动力学信息。构建过表达和弱化argR基因菌株,利用苯酚-硫酸法测定其合成EPS差异。[结果] 大肠杆菌异源表达的ArgR为包涵体,使用尿素变性-复性纯化可获得2.95 mg/mL可溶性蛋白;EMSA和BLI结果显示ArgR和启动子PepsA有特异性结合,且结合因解离水平低而稳定;过表达argR基因可显著降低嗜热链球菌EPS合成,而弱化argR基因则提高EPS合成。[结论] 本研究表明ArgR能特异性结合嗜热链球菌eps基因簇启动子,并负调控EPS生物合成。  相似文献   

8.
Mutational analysis of the arginine repressor of Escherichia coli   总被引:1,自引:0,他引:1  
Arginine biosynthesis in Escherichia coli is negatively regulated by a hexameric repressor protein, encoded by the gene argR and the corepressor arginine. By hydroxylamine mutagenesis two types of argR mutants were isolated and mapped. The first type is transdominant. In heterodiploids, these mutant polypeptides reduce the activity of the wild-type repressor, presumably by forming heteropolymers. Four mutant repressor proteins were purified. Two of these map in the N-terminal half of the protein. Gel retardation experiments showed that they bind poorly to DNA, but they could be precipitated by l -arginine at the same concentration as the wild-type repressor. The other two mutant repressors map in the C-terminal half of the protein. They are poorly precipitated by L-arginine and they bind poorly to DNA. In addition, one of these mutants appears to exist as a dimer. The second type of argR mutant repressor consists of super-repressors. Such mutants behave as arginine auxotrophs as a result of hyper-repression of arginine biosynthetic enzymes. They map at many locations throughout the argR gene. Three arginine super-repressor proteins were purified, in comparison with the wild-type repressor, two of them were shown to have a higher DNA-binding affinity in the absence of bound arginine, while the third was shown to have a higher DNA-binding affinity when bound to arginine.  相似文献   

9.
Xu M  Rao Z  Dou W  Jin J  Xu Z 《Current microbiology》2012,64(2):164-172
Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-l-glutamate (NAG) to N-acety-l-glutamy-l-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the l-arginine-binding sites of feedback inhibition in Cglu_NAGK are described. The N-helix and C-terminal residues were first deleted, and the results indicated that they are both necessary for Cglu_NAGK, whereas, the complete N-helix deletion (the front 28 residues) abolished the l-arginine inhibition. Further, we study here the impact on these functions of 12 site-directed mutations affecting seven residues of Cglu_NAGK, chosen on the basis of homology structural alignment. The E19R, H26E, and H268N variants could increase the I0.5 R 50–60 fold, and the G287D and R209A mutants could increase the I0.5 R 30–40 fold. The E281A mutagenesis resulted in the substrate kinetics being greatly influenced. The W23A variant had a lower specific enzyme activity. These results explained that the five amino acid residues (E19, H26, R209, H268, and G287) located in or near N-helix are all essential for the formation of arginine inhibition.  相似文献   

10.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   

11.
The pyridoxal-5′-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of d-arginine and d-lysine by P. taetrolens.  相似文献   

12.
13.
We recently proposed a metabolic engineering strategy for l-ornithine production based on the hypothesis that an increased intracellular supply of N-acetylglutamate may further enhance l-ornithine production in a well-defined recombinant strain of Corynebacterium glutamicum. In this work, an argJ-deficient arginine auxotrophic mutant of C. glutamicum is suppressed by a different locus of C. glutamicum ATCC13032. Overexpression of the NCgl1469 open reading frame (ORF), exhibiting N-acetylglutamate synthase (NAGS) activity, was able to complement the C. glutamicum arginine-auxotrophic argJ strain and showed increased NAGS activity from 0.03 to 0.17 units mg−1 protein. Additionally, overexpression of the NCgl1469 ORF resulted in a 39% increase in excreted l-ornithine. These results indicate that the intracellular supply of N-acetylglutamate is a rate-limiting step during l-ornithine production in C. glutamicum.  相似文献   

14.
Corynebacterium glutamicum played a central role in the establishment of fermentative production of amino acids, and it is a model for genetic and physiological studies. The general aromatic amino acid transporter, AroP Cg , was the sole functionally identified aromatic amino acid transporter from C. glutamicum. In this study, the ncgl1108 (named as pheP Cg ), which is located upstream of the genetic cluster (ncgl1110 ∼ ncgl1113) for resorcinol catabolism, was identified as a new l-Phe specific transporter from C. glutamicum RES167. The disruption of pheP Cg resulted in RES167∆ncgl1108, and this mutant showed decreased growth on l-Phe (as nitrogen source) but not on l-Tyr or l-Trp. Uptake assays with unlabeled and 14C-labeled l-Phe and l-Tyr indicated that the mutants RES167∆ncgl1108 showed significant reduction in l-Phe uptake than RES167. Expression of pheP Cg in RES167∆ncgl1108/pGXKZ1 or RES167∆(ncgl1108-aroP Cg )/pGXKZ1 restored their ability to uptake for l-Phe and growth on l-Phe. The uptake of l-Phe was not inhibited by nine amino acids but by l-Tyr. The K m and V max values of RES167∆(ncgl1108-aroP Cg )/pGXKZ1 for l-Phe were determined to be 10.4 ± 1.5 μM and 1.2 ± 0.1 nmol min−1 (mg DW)−1, respectively, which are different from K m and V max values of RES167∆(ncgl1108-aroP Cg ) for l-Phe [4.0 ± 0.4 μM and 0.6 ± 0.1 nmol min−1 (mg DW)−1]. In conclusion, this PheP Cg is a new l-Phe transporter in C. glutamicum.  相似文献   

15.
Synthesis of cyanophycin (multi-l-arginyl-poly-l-aspartic acid, CGP) in recombinant organisms is an important option to obtain sufficiently large amounts of this polymer with a designed composition for use as putative precursors for biodegradable technically interesting chemicals. Therefore, derivates of CGP, harbouring a wider range of constituents, are of particular interest. As shown previously, cyanophycin synthetases with wide substrate ranges incorporate other amino acids than arginine. Therefore, using an organism, which produces the required supplement by itself, was the next logical step. Former studies showed that Pseudomonas putida strain ATCC 4359 is able to produce large amounts of l-citrulline from l-arginine. By expressing the cyanophycin synthetase of Synechocystis sp. PCC 6308, synthesis of CGP was observed in P. putida ATCC 4359. Using an optimised medium for cultivation, the strain was able to synthesise insoluble CGP amounting up to 14.7 ± 0.7% (w/w) and soluble CGP amounting up to 28.7 ± 0.8% (w/w) of the cell dry matter, resulting in a total CGP content of the cells of 43.4% (w/w). HPLC analysis of the soluble CGP showed that it was composed of 50.4 ± 1.3 mol % aspartic acid, 32.7 ± 2.8 mol % arginine, 8.7 ± 1.6 mol % citrulline and 8.3 ± 0.4 mol % lysine, whereas the insoluble CGP contained less than 1 mol % of citrulline. Using a mineral salt medium with 1.25 or 2% (w/v) sodium succinate, respectively, plus 23.7 mM l-arginine, the cells synthesised insoluble CGP amounting up to 25% to 29% of the CDM with only a very low citrulline content.  相似文献   

16.
The Escherichia coli arginine repressor (ArgR) is an l -arginine-dependent DNA-binding protein that controls expression of the arginine biosynthetic genes and is required as an accessory protein in Xer site-specific recombination at cer and related recombination sites in plasmids. Site-directed mutagenesis was used to isolate two mutants of E. coli ArgR that were defective in arginine binding. Results from in vivo and in vitro experiments demonstrate that these mutants still act as repressors and bind their specific DNA sequences in an arginine-independent manner. Both mutants support Xer site-specific recombination at cer. One of the mutant proteins was purified and shown to bind to its DNA target sequences in vitro with different affinity and as a different molecular species to wild-type ArgR.  相似文献   

17.
Erythrocytes l-arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. l-Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes l-arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V max measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes l-arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.  相似文献   

18.
Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to d-xylose and d-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding d-xylose isomerase and xylulokinase, respectively, for d-xylose utilization and expressed C. glutamicum R bglF 317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) β-glucoside-specific enzyme IIBCA component and phospho-β-glucosidase, respectively, for d-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of d-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA–xylB clusters and one bglF 317A bglA cluster. In both d-cellobiose and d-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l−1 d-glucose, 20 g l−1 d-xylose, and 10 g l−1 d-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.  相似文献   

19.
Phosphoenolpyruvate carboxylase (PEPCx) has recently been found to be dispensable as an anaplerotic enzyme for growth and lysine production of Corynebacterium glutamicum. To clarify the role of the glyoxylate cycle as a possible alternative anaplerotic sequence, defined PEPCx- and isocitrate-lyase (ICL)-negative double mutants of C. glutamicum wild-type and of the l-lysine-producing strain MH20-22B were constructed by disruption of the respective genes. Analysis of these mutants revealed that the growth on glucose and the lysine productivity were identical to that of the parental strains. These results show that PEPCx and the glyoxylate cycle are not essential for growth of C. glutamicum on glucose and for lysine production and prove the presence of another anaplerotic reaction in this organism. To study the anaplerotic pathways in C. glutamicum further, H13CO3 -labeling experiments were performed with cells of the wild-type and a PEPCx-negative strain growing on glucose. Proton nuclear magnetic resonance analysis of threonine isolated from cell protein of both strains revealed the same labeling pattern: about 37% 13C enrichment in C-4 and 3.5% 13C enrichment in C-1. Since the carbon backbone of threonine corresponds to that of oxaloacetate, the label in C-4 of threonine positively identifies the anaplerotic pathway as a C3-carboxylation reaction that also takes place in the absence of PEPCx. Received: 27 December 1995 / Accepted: 20 March 1996  相似文献   

20.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号