首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local ecosystem resilience to fire disturbance can be influenced by multiple factors, from topography and climate, to fire history and pre-fire structure of biotic communities. Here we investigated the factors affecting post-fire recovery of scrub vegetation in areas under Mediterranean climate affected by frequent fires. We hypothesized that, under comparable climatic and topographic conditions, geological factors (with bedrock type as a proxy) would be at least as important as fire history in explaining patterns of post-fire recovery. We surveyed scrub vegetation in a mountain study area in Portugal, using a stratified random sampling scheme, with fire frequency, time since last fire, and bedrock type (granite vs. schist) as stratifying layers. Based on vegetation and plant community data from 40 plots, we analyzed total species richness and composition, and the relative abundance of functional groups defined on the basis of general (non fire-specific) life-history traits. We found that, at a local scale, lithology can override fire history in determining post-fire recovery. Vegetation plots on granite exhibited a considerable development of tall scrubs and higher values of total species richness. They also hosted higher numbers of animal-dispersed woody species, of trees and tall scrubs, of woody deciduous species, and of forest, edge and tall scrub species. Differences in the post-fire development of scrub vegetation and in the functional profile of plant communities highlight the need to consider local geological diversity when establishing priorities for post-fire active restoration under scenarios of limited resources.  相似文献   

2.
A “space-for-time substitution” was used to analyse how the communities of Spheciformes wasps varied in different diversity parameters for a period of 15 years after a summer wildfire in a Mediterranean agroecosystem (Arribes del Duero, western Spain), employing Malaise traps and yellow pan traps to sample the communities. Both the habitat and the particular environmental conditions marking the interannual population variations in Spheciformes communities exert an important influence on the resultant assemblage, although the time after the wildfire was the most important factor in the recovery of species H′ diversity and evenness after the disturbance. Fire caused a drop of diversity and evenness values. Nevertheless, evenness recovered continuously, while H′ diversity continued to decrease until experiencing a recovery as from the fourth-fifth year post-fire. The effect of the time after the wildfire on abundance (N) or richness (S) values was not significant.  相似文献   

3.
Protected areas are the focus of most conservation efforts worldwide. Despite vast amount of investment in protected areas, biodiversity loss continues. This has led to increasing efforts to develop measures to assess the effectiveness of protected areas. The reliability of these measures depends on the quality of the information collected. However, because the resources available for the collection of information are limited, several strategies have been developed to reduce the resources necessary. In this study the combination of two resource reduction approaches—bioindicator and higher-taxa—is proposed. Spheciformes have been found to be useful as biodiversity, ecological and environmental indicators. Identification to the species level is usually very costly, but the use of genus-level information has been suggested. Tribe- and genus-level data for Spheciformes were assessed for their ability to predict the number of species independently of other variables—sampling area, geographic location, vegetation type, disturbance regime, and sampling effort—at three Portuguese protected areas. Tribe and genus-level data were found to be good indicators, with genus being the more reliable taxonomic level. Sampling effort was the only external variable that affected the relationship between species and higher-taxa richness. Genus-level data were also found to be useful for ranking sites according to richness or composition, and for determining richness-based and rarity-based complementary sets of sites for conservation. Using genus richness as a surrogate for species richness seems a promising approach for monitoring and contributing to the establishment of protected areas in Portugal and the entire Mediterranean region.  相似文献   

4.
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001–2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.  相似文献   

5.
Little is known about the impact of disturbances on functional diversity and the long‐term provisioning of ecosystem services, especially in animals. In this work we analyze the effect of wildfire on the functional composition of Mediterranean ant communities. In particular, we asked whether a) fire changes functional composition (mean and dissimilarity of trait values) at the community level; and b) such fire‐induced functional modification is driven by changes in the relative abundance‐dominance of species or by a replacement of species with different traits. We sampled ant communities in burned and unburned plots along 22 sites in a western Mediterranean region, and we computed two complementary functional trait composition indices (‘trait average’ and ‘trait dissimilarity’) for 12 functional traits (related to resource exploitation, social structure and reproduction) and with two different datasets varying in the way species abundance is considered (i.e. abundance and occurrence data). Our results suggest a set of functional responses that seem to be related to direct mortality by fire as well as to indirect fire‐induced modifications in environmental conditions relevant for ants. Trait average of colony size, worker size, worker polymorphism and the ratio between queen and worker size, as well as the trait dissimilarity of the proportion of behaviorally dominant species and of liquid food consumption, and overall functional diversity, were higher in burned than in unburned areas. Interestingly, different patterns arise when comparing results from abundance and occurrence data. While the response to fire in trait averages is quite similar, in the case of trait dissimilarity, the higher values in response to fire are much more marked when considering occurrence rather than abundance data. Our results suggest that changes in trait average are driven at the same time by replacement of species with different traits and by changes in the relative abundance‐dominance of species, while fire promotes a higher diversity of functions that is primarily driven by rare species that are functionally unique. Overall, we observed major fire‐induced changes in functional composition in Mediterranean ant communities that might have relevant consequences for ecosystem processes and services.  相似文献   

6.
Summary Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.  相似文献   

7.
Dominance level is traditionally expressed as a ratio between the number of individuals belonging to the most abundant species and the total number of individuals in a biological community. It is known that local species richness is usually higher in biological communities with high dominance level than in communities with low one. Taking into account a complex nature of the dominance phenomenon, the underlying reasons (or mechanisms) may be diverse: 1. Dominance level may be determined by bioecological traits of the most abundant species as well as stochastic impacts. The more abundant is dominant species, the fewer amount of resources goes to concomitant species and, therefore, the lower is community species richness. 2. The part of community resources used by the dominant species may be not a special case but can be a reflection of general pattern of resources distribution among species under specific environmental conditions. Correspondingly, in communities with higher dominance level there might be more "strict" distribution of resources among concomitant species, which, in turn, might influence community species richness. 3. The relationship between dominance level and community species richness may be caused by their dependence on the third variable, namely regional species pool. In the present paper we tackle the problem using arboreal and insectivorous bird communities of the West Caucasus as a case study. The data were collected in different altitudinal belts on both macroslopes of the western part of the Main Caucasian Ridge. The number of tree species and individual trees was counted within homogenous patches of arboreal phytocenoses 300 m2 in area. Species richness and numbers of insectivorous birds were estimated in course of route surveys with a route length being about 5 km. An analysis of empirical data was carried out using univariate and multiple correlation-regression techniques. The results indicate that the relationship between dominance and local species richness is determined to a large extent (by 50-60%) by a dominant taking over greater or lesser amount of the resources (mechanism 1). The role of two other mechanisms (2 and 3) is not so prominent--together, they are responsible for 25-40% of the relationship power. Relative contribution of different mechanisms to the relationship under consideration depends on conformity of species abundance rank structure with the geometric series model. At those sites where this conformity is manifested, the relationship between dominance level and species richness is due mainly to mechanisms 1 and 2, i.e., is determined by local processes. At other sites, where the conformity of species abundance rank structure with the geometric series model is not so good, a certain role belongs to the size of regional species pool (mechanism 3).  相似文献   

8.
Abstract Patterns in species richness from a wide range of plant communities in Ku‐ring‐gai Chase National Park, New South Wales, Australia, were examined in relation to a number of environmental variables, including soil physical and chemical characteristics. Total species richness and richness of three growth‐form types (trees, shrubs and ground cover) were determined in duplicate 500‐m2 quadrats from 50 sites on two geological substrata: Hawkesbury Sandstone and Narrabeen shales and sandstones. Generalized linear models (GLM) were used to determine the amount of variation in species richness that could be significantly explained by the measured environmental variables. Seventy‐three per cent of the variation in total species richness was explained by a combination of soil physical and chemical variables and site attributes. The environmental variables explained 24% of the variation in tree species richness, 67% of the variation in shrub species richness and 62% of the variation in ground cover species richness. These results generally support the hypothesis of an environmental influence on patterns in total species richness and richness of shrubs and ground cover species. However, tree species richness was not adequately predicted by any of the measured environmental variables; the present environment exerts little influence on the richness of this growth‐form type. Historical factors, such as fire or climatic/environmental conditions at time of germination or seedling establishment, may be important in determining patterns in tree species richness at the local scale.  相似文献   

9.
Patterns of species’ abundance and occurrence over time and space allow division of species into (i) common species, which are abundant, but have a low diversity, and (ii) rare species, which are far more diverse and less abundant. Understanding the relationships among these two species groups and how they are affected by environmental conditions is a major challenge for ecologists, especially considering the distinction between local environmental factors and regional factors and variations in abundance over the course of the year. In this study, we focused on the long-term relationship between the abundance of rare and common ephemeropterans and abiotic factors on local and regional scales. Our hypotheses are that common species will be affected primarily by regional environmental variables (i), whereas rare species will be influenced more by temporal variation (ii). Together, both local and regional abiotic variables, plus temporal variation, best explained the abundance of the common species, whereas temporal variation was the best predictor of rare species. Considering the theoretical aspects and the empirical evidence, we discuss the results based on the plasticity of the common species and the life cycle of the rare ones. We believe that our findings reinforce the need for the deconstruction of communities for a deeper understanding of their relationships with abiotic variables and, in particular, the specific aspects of these relationships in the context of the different guilds of the community.  相似文献   

10.
Abstract The effects of recent fire frequency and time‐since‐fire on plant community composition and species abundance in open‐forest and woodland vegetation in Girraween National Park, south‐east Queensland, Australia, were examined. Cover‐abundance data were collected for shrub and vine species in at least 10 400‐m2 plots in each of four study areas. Study areas were within one community type and had burnt most recently either 4 or 9 years previously. Variations in fire frequency allowed us to compare areas that had burnt at least three times in the previous 25 years with less frequently burnt areas, and also woodlands that had experienced a 28‐year interfire interval with more frequently burnt areas. Although species richness did not differ significantly with either time‐since‐fire or fire frequency, both these factors affected community composition, fire frequency being the more powerful. Moisture availability also influenced floristics. Of the 67 species found in five or more plots, six were significantly associated with time‐since‐fire, whereas 11 showed a significant difference between more and less frequently burnt plots in each of the two fire‐frequency variables. Most species, however, did not vary in cover‐abundance with the fire regime parameters examined. Even those species that showed a marked drop in cover‐abundance when exposed to a particular fire regime generally maintained some presence in the community. Five species with the capacity to resprout after fire were considered potentially at risk of local extinction under regimes of frequent fire, whereas two species were relatively uncommon in long‐unburnt areas. Variable fire regimes, which include interfire intervals of at least 15 years, could be necessary for the continuity of all species in the community.  相似文献   

11.
Abstract. Natural dynamics in the boreal forest is influenced by disturbances. Fire recurrence affects community development and landscape diversity. Forest development was studied in the northeastern boreal forest of Quebec. The objective was to describe succession following fire and to assess the factors related to the changes in forest composition and structure. The study area is located in northeastern Quebec, 50 km north of Baie‐Comeau. We used the forest inventory data gathered by the Ministère des Ressources naturelles du Québec (MRNQ). In circular plots of 400 m2, the diameter at breast height (DBH) of all stems of tree species greater than 10 cm was recorded and in 40 m2 subplots, stems smaller than 10 cm were measured. A total of 380 plots were sampled in an area of 6000 km2. The fire history reconstruction was done based on historical maps, old aerial photographs and field sampling. A time‐since‐fire class, a deposit type, slope, slope aspect and altitude were attributed to each plot. Each plot was also described according to species richness and size structure characteristics. Traces of recent disturbance were also recorded in each plot. Changes in forest composition were described using ordination analyses (NMDS and CCA) and correlated with the explanatory variables. Two successional pathways were observed in the area and characterized by the early dominance of intolerant hardwood species or Picea mariana. With time elapsed since the last fire, composition converged towards either Picea mariana, Abies balsamea or a mixture of both species and the size structure of the coniferous dominated stands got more irregular. The environmental conditions varied between stands and explained part of the variability in composition. Their effect tended to decrease with increasing time elapsed since fire, as canopy composition was getting more similar. Gaps may be important to control forest dynamics in old successional communities.  相似文献   

12.
The development of epilithic cyanobacteria communities in a Mediterranean calcareous stream in the province of Murcia (SE Spain) was studied during the course of one year in an attempt to clarify the environmental variables that influence the production of microcystins. The predominant cyanobacteria were species of Rivularia, which formed conspicuous colonies throughout the year. Seasonally, other species were abundant: Schizothrix fasciculata, Tolypothrix distorta and Phormidium splendidum. All the species collected produced microcystins to a varying degree (up to five varieties), while the benthic community as a whole produced concentrations as high as 20.45 mg m−2. At the same time, the presence of microcystins dissolved in water was confirmed. Among environmental variables, air temperature and silicate content were positively and strongly correlated with total microcystins, while nitrite, nitrate, orthophosphate, calcium and flow were negatively correlated with them. Dissolved microcystins were negatively correlated with microcystin LR, P.A.R. and total phosphorus and positively with rainfall. The production of microcystin YR seems to be regulated by different factors from those regulating the other main varieties (microcystin LR and microcystin RR). The data obtained indicate that all the tested benthic cyanobacteria produced microcystins in this shallow calcareous stream, which may contribute to their predominance in the prevailing conditions. The accumulation of microcystins in mucilaginous colonies of other groups of algae poses new questions concerning the possible ecological function of these compounds and needs further study.  相似文献   

13.
Ecologists have long recognized that factors operating at both local and regional scales influence whether a given species occurs in an ecological community. The relative roles of variables manifested at local and regional scales on community structure, however, remain an unexplored issue for many faunas. To address this question, we compared the community composition and species diversity of forest Lepidoptera between (i) large forest tracts in historically glaciated and unglaciated regions of the eastern deciduous forest in North America, and (ii) large and small forest patches within a highly fragmented forest landscape. Specifically, we used seasonally stratified sampling to test whether regional and local differences in moth communities were related to variation in stand structure and floristic composition. At the local scale, we tested three alternative hypotheses describing the effects of patch size on moth species richness: species impoverishment, species replacement, or species supplementation. Cluster analysis revealed significant compositional differences in moth communities sampled between (i) early and late seasons, (ii) glaciated and unglaciated forest eco‐regions, and (iii) large and small forest patches. Canonical correspondence analysis suggested that floristic variation at regional scales had a greater role in determining moth community composition than local vegetation or patch‐size effects. Species richness was higher in the glaciated North Central Tillplain, and was attributable to a more diverse herbaceous feeding moth assemblage. Finally, we found evidence that both species impoverishment and species replacement processes structure the moth fauna of small woodlots; the richness of moths with larvae that feed on woody plants decreased with patch area, but herbaceous feeding species increased in diversity in smaller patches. Thus, our results suggest that local and regional differences in moth community structure are mediated by differences in host‐plant resources attributable to regional biogeographic history and local differences in patch size. Because community composition appeared to be more sensitive to environmental variation than species richness, we suggest that monitoring lepidopteran species diversity in forests will not detect significant changes in species composition due to environmental change.  相似文献   

14.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

15.
于1997-1999年检测了俄联邦卡尔梅克(Kalmyki)共和国ChernieZemly半干旱草原由10个物种组成的啮齿类群落。该区域的植被特点是家畜大量减少后形成的恢复植被。我们的任务之一就是了解不同啮齿动物的生境需求,以预测不同物种对环境变化的特异性反应。我们也检测了群落空间结构、生态位参数和物种多样性。逐步回归分析表明,各种啮齿动物的空间分布仅部分地决定于已知环境因子(2-6个变量)。虽然方程式具有强显著性,但决定系数R2很低,不超过18%。对于大多数种类,这种结果可由最近草原扩大而来的生境异质性降低解释。物种生境选择条件和资源的明显低水平可能是由物种对环境变化的惯性反应造成的。判别函数分析和主分量分析结果表明,群落结构以及单个物种的生态位参数在不同年间并不稳定。空间分层结构在种间中等和低重叠的高物种多样性年度表现明显。多样性、生态位组成和生态位宽度分析结果表明,不同物种对环境条件和资源变化的反应具有不同的个性化方式。同时,物种对环境动态的明显个性化反应成为物种多样性定向变化的原因。限定空间和相对单一条件下的结果表明,啮齿类α多样性与生境结构复杂性呈正相关,而与生境生产力特征呈负相关。观察表明,卡尔梅克国草原扩大伴随着初级生产力的升高和生境异质性的降低。随着时间的推移会导致大多数草原和半干旱区域啮齿类多样性的降低,并形成动物区系核心.  相似文献   

16.
In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indirectly through changes in resource abundance and availability. In North American tallgrass prairies, fire and grazing often have disparate effects on plant resources and plant diversity, yet, little is known about the individual and interactive effects of fire and grazing on resource variability and how that variability relates to heterogeneity in plant community structure, particularly at small scales. We conducted a field study to determine the interactive effects of different long-term fire regimes (annual vs four-year fire frequency) and grazing by native ungulates ( Bos bison ) on small-scale plant community structure and resource variability (N and light) in native tallgrass prairie. Grazing enhanced light and nitrogen availability, but did not affect small-scale resource variability. In addition, grazing reduced the dominance of C4 grasses which enhanced species richness, diversity and community heterogeneity. In contrast, annual fire increased community dominance and reduced species richness and diversity, particularly in the absence of grazing, but had no effect on community heterogeneity, resource availability and resource variability. Variability in the abundance of resources showed no relationship with community heterogeneity at the scale measured in this study, however we found a relationship between community dominance and heterogeneity. Therefore, we conclude that grazing generated small-scale community heterogeneity in this mesic grassland by directly affecting plant community dominance, rather than indirectly through changes in resource variability.  相似文献   

17.
Fire alters the structure and composition of above‐ and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20‐year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late‐successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.  相似文献   

18.
Aim Determining how differences in time of germination can affect plant establishment in plant communities that, after a disturbance, must reestablish from seeds under climatic conditions subject to extremes, such as the Mediterranean. Although early germination may be beneficial for survival in summer, when drought is severe, this may expose the seedlings to winter extremes, thus to higher mortality. Understanding how sensitive is the establishment of different species to temporal patterns of germination will help to understand the factors that control species distribution and community stability in disturbance‐prone environments, as well as its sensitivity to changes in weather patterns as climate changes. Methods An experimental fire was made in early fall in an old Cistus–Erica shrubland in Toledo (central Spain). After fire, germination, survival and growth of the three dominant seeder species (Cistus ladanifer, Erica umbellata and Rosmarinus officinalis) were monitored during the first 3 years after fire. Seedlings were tagged to identify their time of emergence, and divided into cohorts according to their month of germination. Differences in survival of the various cohorts were evaluated by means of a Wilcoxon (Gehan) statistic. Height of surviving, tagged plants was compared among cohorts by means of a Kolmogorov–Smirnov test. Results The year following fire was one of the driest on record, while the next one was one of the wettest. Germination was more abundant during the first than during the second year. Establishment was mainly from first‐year germination, as the majority of second‐year germinated seedlings died. Temporal patterns of germination within a year and between years varied between species. Seedling mortality was highest immediately following germination, not in summer. Mortality was related to time of germination: during a given period of time, the mortality of younger seedlings was higher than that of older ones. However, survival was not highest for the first cohorts. In general, the earlier the seedlings germinated the more vigourous they became, more clearly so for Cistus than for Rosmarinus, but differences tended to disappear with time. Overall, time of germination varied between species and affected differently seedling survival and vigour of the various species. Rosmarinus and Cistus had sufficient survivors to reestablish the initial population. Erica, despite abundant germination, suffered a strong population reduction. Main conclusions Mediterranean shrub species differ in their temporal patterns of germination and survival after fire. The effect of time of germination is complex: germinating early is advantageous since old seedlings fared better than younger ones when confronted with the same rigours. However, germinating early might expose the seedlings to greater hazards and the first cohort might not survive best. The temporal window for establishment is narrow and mainly restricted to the first year after fire. Second year seedlings, irrespective of most favourable conditions, survived very little. Missing the window of establishment might virtually lead to a population collapse, despite having very high germination, as found for Erica.  相似文献   

19.
Fire has impact on reptile communities with marked shifts in community composition between burnt and unburnt areas. These shifts are often related to the preference of reptile species throughout early or late post-fire successional habitats. Areas located in transition zones between bioregions harbor complex reptile communities with a mixture of biogeographic affinities. In these biogeographic crossroads, since fire simplifies the habitat structure, we expected simpler (lower alpha diversity) and more similar (lower beta diversity) reptile communities within burnt than within unburnt localities. We have tested this hypothesis in a transition zone between the Atlantic and Mediterranean bioregions in northern Portugal. Reptiles were surveyed in five localities (8 times per locality) along fire edges in which each locality was composed of one burnt and one unburnt transect. In total, 588 reptiles from 10 species were recorded. Unburnt transects had higher alpha and beta diversity and higher relative abundance of non-Mediterranean individuals than did burnt transects. A redundancy analysis also showed contrasting responses of Mediterranean and non-Mediterranean species, the former increasing and the latter decreasing after fire. Our study demonstrates that fire reduced the complexity of the reptile community, with benefits towards Mediterranean species due to its environmental preferences and long evolutionary association to fire. In biogeographic crossroads such as the study area, the retention of long unburnt vegetation is expected to maintain more diverse reptile communities.  相似文献   

20.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号