首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadherin-actin interactions at adherens junctions   总被引:1,自引:0,他引:1  
The adherens junction (AJ) is a major cell-cell junction that mediates cell recognition, adhesion, morphogenesis, and tissue integrity. Although AJs transmit forces generated by actomyosin from one cell to another, AJs have long been considered as an area where signal transduction from cadherin ligation takes place through cell adhesion. Through the efforts to understand embryonic or cellular morphogenesis, dynamic interactions between the AJ and actin filaments have become crucial issues to be addressed since actin association is essential for AJ development, remodeling and function. Here, I provide an overview of cadherin-actin interaction from morphological aspects and of possible molecular mechanisms revealed by recent studies.  相似文献   

2.
The DLC1 (for deleted in liver cancer 1) tumor suppressor gene encodes a RhoGAP protein that inactivates Rho GTPases, which are implicated in regulation of the cytoskeleton and adherens junctions (AJs), a cell-cell adhesion protein complex associated with the actin cytoskeleton. Malignant transformation and tumor progression to metastasis are often associated with changes in cytoskeletal organization and cell-cell adhesion. Here we have established in human cells that the AJ-associated protein α-catenin is a new binding partner of DLC1. Their binding was mediated by the N-terminal amino acids 340 to 435 of DLC1 and the N-terminal amino acids 117 to 161 of α-catenin. These proteins colocalized in the cytosol and in the plasma membrane, where together they associated with E-cadherin and β-catenin, constitutive AJ proteins. Binding of DLC1 to α-catenin led to their accumulation at the plasma membrane and required DLC1 GAP activity. Knocking down α-catenin in DLC1-positive cells diminished DLC1 localization at the membrane. The DLC1-α-catenin complex reduced the Rho GTP level at the plasma membrane, increased E-cadherin's mobility, affected actin organization, and stabilized AJs. This process eventually contributed to a robust oncosuppressive effect of DLC1 in metastatic prostate carcinoma cells. Together, these results unravel a new mechanism through which DLC1 exerts its strong oncosuppressive function by positively influencing AJ stability.  相似文献   

3.
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.  相似文献   

4.
5.
6.
Adaptors, junction dynamics, and spermatogenesis   总被引:8,自引:0,他引:8  
Adaptors are component proteins of junctional complexes in all epithelia, including the seminiferous epithelium of the mammalian testis. They recruit other regulatory and structural proteins to the site of both anchoring junctions (such as cell-cell actin-based adherens junctions [AJs], e.g., ectoplasmic specialization [ES] and tubulobulbar complex, which are both testis-specific cell-cell actin-based AJ types, and cell-cell intermediate filament-based desmosome-like junctions) and tight junctions (TJ). Furthermore, adaptors per se can be substrates and/or activators of kinases or phosphatases. As such, the integrity of cell junctions and the regulation of junction dynamics during spermatogenesis rely on adaptors for their ability to recruit and link different junctional components to the same site and to tether transmembrane proteins at both anchoring and TJ sites to the underlying cytoskeletons, such as the actin filaments, intermediate filaments, and microtubules. These protein-protein interactions are possible because adaptors are composed of conserved protein binding domains, which allow them to link to more than one structural or signaling protein, recruiting multi-protein complexes to the same site. Herein, we provide a timely review of adaptors recently found at the sites of AJ (e.g., ES) and TJ. In addition, several in vivo models that can be used to delineate the function of adaptors in the testis are described, and the role of adaptors in regulating junction dynamics pertinent to spermatogenesis is discussed.  相似文献   

7.
8.
D Chu  H Pan  P Wan  J Wu  J Luo  H Zhu  J Chen 《Development (Cambridge, England)》2012,139(19):3561-3571
During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.  相似文献   

9.
Tissues of multicellular organisms are characterised by several types of specialised cell–cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton‐associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.  相似文献   

10.
Vascular endothelial cadherin (VE-cadherin) connects neighboring endothelial cells (ECs) via interendothelial junctions and regulates EC proliferation and adhesion during vasculogenesis and angiogenesis. The cytoplasmic domain of VE-cadherin recruits α- and β-catenins and γ-catenin, which interact with the actin cytoskeleton, thus modulating cell morphology. Dysregulation of the adherens junction/cytoskeletal axis is a hallmark of invasive tumors. We now demonstrate that the transmembrane ubiquitin ligase K5/MIR-2 of Kaposi's sarcoma-associated herpesvirus targets VE-cadherin for ubiquitin-mediated destruction, thus disturbing EC adhesion. In contrast, N-cadherin levels in K5-expressing cells were increased compared to those in control cells. Steady-state levels of α- and β-catenins and γ-catenin in K5-expressing ECs were drastically reduced due to proteasomal destruction. Moreover, the actin cytoskeleton was rearranged, resulting in the dysregulation of EC barrier function as measured by electric cell-substrate impedance sensing. Our data represent the first example of a viral protein targeting adherens junction proteins and suggest that K5 contributes to EC proliferation, vascular leakage, and the reprogramming of the EC proteome during Kaposi's sarcoma tumorigenesis.  相似文献   

11.
The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.  相似文献   

12.
Tissue morphogenesis requires assembling and disassembling individual cell-cell contacts without losing epithelial integrity. This requires dynamic control of adherens junction (AJ) positioning around the apical domain, but the mechanisms involved are unclear. We show that atypical Protein Kinase C (aPKC) is required for symmetric AJ positioning during Drosophila embryogenesis. aPKC is dispensable for initial apical AJ recruitment, but without aPKC, AJs form atypical planar-polarized puncta at gastrulation. Preceding this, microtubules fail to dissociate from centrosomes, and at gastrulation abnormally persistent centrosomal microtubule asters cluster AJs into the puncta. Dynein enrichment at the puncta suggests it may draw AJs and microtubules together and microtubule disruption disperses the puncta. Through cytoskeletal disruption in wild-type embryos, we find a balance of microtubule and actin interactions controls AJ symmetry versus planar polarity during normal gastrulation. aPKC apparently regulates this balance. Without aPKC, abnormally strong microtubule interactions break AJ symmetry and epithelial structure is lost.  相似文献   

13.
Catenins: keeping cells from getting their signals crossed   总被引:8,自引:0,他引:8  
  相似文献   

14.
We have found a new cell-cell adhesion system at cadherin-based cell-cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell-cell adhesion systems at AJs by the use of alpha-catenin-deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of alpha-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and alpha- and beta-catenins was recruited to nectin-based cell-cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain-associated proteins and suggest that these two cell-cell adhesion systems cooperatively organize cell-cell AJs.  相似文献   

15.
Tight junctions (TJs) and adherens junctions (AJs) are dynamic structures linked to the actin cytoskeleton, which control the paracellular permeability of epithelial and endothelial barriers. TJs and AJs are strictly regulated in a spatio-temporal manner by a complex signaling network, including Rho/Ras-GTPases, which have a pivotal role. Rho preferentially regulates TJs by controlling the contraction of apical acto-myosin filaments, whereas Rac/Cdc42 mainly coordinate the assembly-disassembly of AJ components. However, a subtle balance of Rho/Ras-GTPase activity and interplay between these molecules is required to maintain an optimal organization and function of TJs and AJs. Conversely, integrity of intercellular junctions generates signals through Rho-GTPases, which are involved in the regulation of multiple cellular processes. Rho/Ras-GTPases and the control of intercellular junctions are the target of various bacterial toxins responsible for severe diseases in man and animals, and are part of their mechanism of action. This review focuses on the regulation of TJs and AJs by Rho/Ras-GTPases through molecular approaches and bacterial toxins.  相似文献   

16.
Epithelial cell-cell adhesion is mediated by E-cadherin, an intercellular N-glycoprotein adhesion receptor that functions in the assembly of multiprotein complexes anchored to the actin cytoskeleton named adherens junctions (AJs). E-cadherin ectodomains 4 and 5 contain three potential N-glycan addition sites, although their significance in AJ stability is unclear. Here we show that sparse cells lacking stable AJs produced E-cadherin that was extensively modified with complex N-glycans. In contrast, dense cultures with more stable AJs had scarcely N-glycosylated E-cadherin modified with high mannose/hybrid and limited complex N-glycans. This suggested that variations in AJ stability were accompanied by quantitative and qualitative changes in E-cadherin N-glycosylation. To further examine the role of N-glycans in AJ function, we generated E-cadherin N-glycosylation variants lacking selected N-glycan addition sites. Characterization of these variants in CHO cells, lacking endogenous E-cadherin, revealed that site 1 on ectodomain 4 was modified with a prominent complex N-glycan, site 2 on ectodomain 5 did not have a substantial oligosaccharide, and site 3 on ectodomain 5 was decorated with a high mannose/hybrid N-glycan. Removal of complex N-glycan from ectodomain 4 led to a dramatically increased interaction of E-cadherin-catenin complexes with vinculin and the actin cytoskeleton. The latter effect was further enhanced by the deletion of the high mannose/hybrid N-glycan from site 3. In MDCK cells, which produce E-cadherin, a variant lacking both complex and high mannose/hybrid N-glycans functioned like a dominant positive displaying increased interaction with gamma-catenin and vinculin compared with the endogenous E-cadherin. Collectively, our studies show that N-glycans, and complex oligosaccharides in particular, destabilize AJs by affecting their molecular organization.  相似文献   

17.
Actin-based cell-cell adherens junctions (AJs) are crucial not only for mechanical adhesion but also for cell morphogenesis and differentiation. While organization of homotypic AJs is attributed mostly to classic cadherins, the adhesive mechanism of heterotypic AJs in more complex tissues remains to be clarified. Nectin, a member of a family of immunoglobulin-like adhesion molecules at various AJs, is a possible organizer of heterotypic AJs because of its unique heterophilic trans-interaction property. Recently, nectin-2 (-/-) mice have been shown to exhibit the defective sperm morphogenesis and the male-specific infertility, but the role of nectin in testicular AJs has not been investigated. We show here the heterotypic trans-interaction between nectin-2 in Sertoli cells and nectin-3 in spermatids at Sertoli-spermatid junctions (SspJs), heterotypic AJs in testes. Moreover, each nectin-based adhesive membrane domain exhibits one-to-one colocalization with each actin bundle underlying SspJs. Inactivation of the mouse nectin-2 gene causes not only impaired adhesion but also loss of the junctional actin scaffold at SspJs, resulting in aberrant morphogenesis and positioning of spermatids. Localization of afadin, an adaptor protein of nectin with the actin cytoskeleton, is also nectin-2 dependent at SspJs. These results indicate that the nectin-afadin system plays essential roles in coupling cell-cell adhesion and the cortical actin scaffold at SspJs and in subsequent sperm morphogenesis.  相似文献   

18.
The genes encoding transmembrane glycoproteins of the cadherin family, i.e., the Ca2+-dependent cell-cell adhesion molecules, are typically expressed in cell-type- or cell-lineage-specific patterns. One of them, vascular endothelial (VE)-cadherin, is widely considered to be specific for vascular endothelia in which it is either the sole or the predominant cadherin, often co-existing with N-cadherin. This specificity of VE-cadherin for vascular endothelial cells is important not only in blood and lymph vessel biology and medicine, but also for cell-type-based diagnoses, notably those of metastatic tumors. Surprisingly, however, we have recently noted the frequent synthesis, surface exposure, and junction assembly of VE-cadherin in certain other cells, in which this glycoprotein is clustered into adherens junctions (AJs), either alone or in combination with N-cadherin and/or cadherin-11. Such cells include mammalian astrocytes and glioma, probably mostly astrocytoma cells growing in culture, and a specific subtype of astrocytoma in situ. Moreover, VE-cadherin synthesis and AJ assembly, plus the regional clustering of such AJs in certain domains, are not clonally fixed but can appear again and again in cells of the progeny of cloned homogeneous-appearing individual cells, thus resulting in clonal cell colonies that are often heterogeneous in their cadherin junction patterns. We discuss the constitutive presence of VE-cadherin in some non-endothelial cells with respect to certain architectural features and possible physiological and pathogenic functions of the cells, and in comparison with recent reports of VE-cadherin-positive melanomas. This work was supported in part by the Deutsche Krebshilfe (grant 10 2049 Fr1) and the German Ministry for Research and Technology (Program Regenerative Medicine, START-MSC consortium).  相似文献   

19.
ZO-1 is an actin filament (F-actin)-binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through beta- and alpha-catenins as one of many F-actin-binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin-binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin-beta-catenin complex through alpha-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and alpha-catenin-deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only alpha-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of alpha-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with alpha-catenin but also with the nectin-afadin system.  相似文献   

20.
Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号