首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescamine is a useful reagent for the fluorometric assay of primary amines. The extent of the reaction between fluorescamine and primary amines, as well as the fluorescence intensities of the resulting fluorophors depend on pH, solvent composition and reagent concentration. Optimum values for these variables further depend on the amine under study. The influence of these parameters on the fluorogenic reaction of representative amines, and on their fluorophoric derivatives has been investigated, and the results are reported here.  相似文献   

2.
A method based on Rimini test for aliphatic amines was studied and developed for quantitative estimation of aliphatic primary amines. The method involves action of the amine with acetone to form schiff base which complexes with sodium nitroprusside to give violet colour. The absorption maximum in the visible range of the spectrum, for the reaction mixture was found to be 550 nm. The pH (8–11) and reaction time scan for the assay were optimized. A linear relation of concentration (0.2–3 mg/mL) of amine against absorbance at 550 nm was established. Interference due to other reaction components was negligible (±0.02 mg/mL) as compared to the sample in buffer. 1, 3-dimethyl butylamine was used as the model amine and the method was applied to other amines; it was observed that when electron-withdrawing substituents are present in the molecule the reaction is retarded, as the incubation time was longer. This method is useful for estimation of aliphatic primary amine in biological samples.  相似文献   

3.
Facile derivatization of rhodamine 6G in the 2' position by direct reaction with secondary amines is reported. If the secondary amine contains a hydroxy group, the hydroxyl-functional intermediate can be readily esterified to give either fluorescent initiators for atom transfer radical polymerization (ATRP) or a fluorescent methacrylic comonomer. In contrast to rhodamine dyes functionalized using primary amines, which are only fluorescent at low pH, these compounds are highly fluorescent at physiological pH. These new compounds were subsequently used to prepare a range of fluorescently labeled biocompatible polymers based on the biomimetic monomer, 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), for biomedical studies.  相似文献   

4.
The synthesis of 5-alkylamino- and 2,5-bis(alkylamino)-[1,4]-benzoquinones, showing structural similarity to natural mitomycins, was performed through coupling of 2-methoxy-3-methylhydroquinone with primary amines such as n-octylamine, geranylamine and cyclooctylamine using laccases from Myceliophthora thermophila (MtL) and Pycnoporus cinnabarinus SBUG-M 1044 (PcL). Product spectra of laccase reactions differ due to reaction systems pH values (pH 7.0 for MtL and pH 5.0 for PcL) applied to assure enzymes optimal catalytic efficiency. The MtL- and PcL-mediated formation of monoaminated products was achieved at equimolar reactant concentrations with amine coupling at the meta-position to benzoquinones methyl group. Increased formation of diaminated products occurred in PcL-mediated reactions and generally when the amine was supplied in excess. Diamination entailed elimination of the benzoquinone methoxy group (amination in para-position to the first amine substituent). Six products were synthesised and characterised by NMR and HR-MS analysis. The laccase-mediated amine coupling to 2-methoxy-3-methylhydroquinone confers two of the essential pharmaceutical active motifs from mitomycins: (i) a stable 1,4-benzoquinoic parent structure and (ii) a biological active alkylation function (NH).  相似文献   

5.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

6.
We report here a sensitive method for the determination of the absolute configurations of primary amines using exciton-coupled circular dichroism (ECCD). The method works on a microgram scale by derivatization of chiral amines with quinoline chromophores. Complexation of the chiral ligands with metal ion fixes the geometry of the chromophores, resulting in a twist that is governed by the asymmetric carbon configuration and steric environment of the amine. The absolute configurations of the primary amines can be interpreted from the couplets of the ECCD spectra of the derivatized complexes. Crystal structures, 2D NMR studies, and semiempirical calculations provide structural evidence for our model.  相似文献   

7.
Several polyamine derivatives (I-V) conjugated with or without an intercalative moiety were prepared as ribonuclease mimics. Although no DNA-cleaving activity was observed for all compounds tested, mimics I, III, and V bearing an intercalative moiety along with the primary amine and/or imidazole moieties exhibited potent RNA-cleaving activity at near physiological pH. The RNA-cleaving reactions of the compounds show characteristic bell-shaped pH dependency, and the optimal pH values for III and V were well correlated to the pKa values of their active sites, primary amine, and imidazole moieties.  相似文献   

8.
Primary amines functionally replace lysine 258 by catalyzing both the 1,3-prototropic shift and external aldimine hydrolysis reactions with the inactive aspartate aminotransferase mutant K258A. This finding allows classical Brønsted analyses of proton transfer reactions to be applied to enzyme-catalyzed reactions. An earlier study of the reaction of K258A with cysteine sulfinate (Toney, M.D. & Kirsch, J.F., 1989, Science 243, 1485) provided a beta value of 0.4 for the 1,3-prototropic shift. The beta value reported here for the transamination of oxalacetate to aspartate is 0.6. The catalytic efficacy of primary amines is largely determined by basicity and molecular volume. The dependence of the rate constants for the reactions of K258A and K258M on amine molecular volume is nearly identical. This observation argues that the alkyl groups of the added amines do not occupy the position of the lysine 258 side chain in the wild type enzyme. Large primary C alpha and insignificant solvent deuterium kinetic isotope effects with amino acid substrates demonstrate that the amine nitrogen of the exogenous catalysts directly abstracts the labile proton in the rate-determining step.  相似文献   

9.
Two reactions that chemically alter primary aromatic amines (PAA) were used to assess the contribution of these compounds to the indirect bacterial mutagenicity of tar from an experimental low Btu gasifier. The first reaction, nitrosation, effectively eliminated the mutagenicity of several PAA standards and a coal oil when run in a low pH media (1.2). When applied to gasifier tar, extensive direct (not requiring metabolic activity) mutagenicity was generated. This direct mutagenicity limited the interpretation of results. When the pH of the reaction media was raised to 2.5, the mutagenicity of PAA standards and the coal oil were still greater than 90% eliminated, however, no direct mutagenicity was observed for the gasifier tar. Furthermore, only 61% of the indirect (requiring metabolic activation) mutagenicity was eliminated. Acetylation reduced the indirect activity of most primary amine standards by greater than 79%. Acetylation of the tar likewise eliminated part, but not all, of the activity, whereas most of the activity of the coal oil was eliminated. These results indicated that a much lower percentage of the mutagenic activity of low Btu coal tar samples was due to primary aromatic amines than was the case for coal oil.  相似文献   

10.
Imido esters are widely employed for the chemical modification of amino groups in proteins between pH 7–10. We have found that near pH 8 the initial products of reaction of simple primary amines with imido esters are N-alkyl imidates which subsequently react either with ammonia to yield the expected amidine or with water to form free amine. In contrast, near pH 10 amidine formation occurs more rapidly and in better yield, apparently without the accumulation of an intermediate. The observed mechanism of amidine formation implies the possible occurrence of novel side reactions and suggests improved conditions for protein amidination.  相似文献   

11.
The interaction of aromatic amines (aniline, p-chloroaniline, p-toludine and p-anisidine) with iron oxides (goethite, akaganeite and hematite) has been studied. Maximum uptake of amines was observed around pH 7. The adsorption data obtained at neutral pH were found to follow Langmuir adsorption. Anisidine was found to be a better adsorbate probably due to its higher basicity. In alkaline medium (pH?>?8), amines reacted on goethite and akaganeite to give colored products. Analysis of the products by GC–MS showed benzoquinone and azobenzene as the reaction products of aniline while p-anisidine afforded a dimer. IR analysis of the amine–iron oxide hydroxide adduct suggests that the surface acidity of iron oxide hydroxides is responsible for the interaction. The present study suggests that iron oxide hydroxides might have played a role in the stabilization of organic molecules through their surface activity and in prebiotic condensation reactions.  相似文献   

12.
1. 2-Oxoaldehyde dehydrogenase was purified from sheep liver and gave one band on polyacrylamide-gel electrophoresis. 2. The enzyme was completely dependent for its activity on the presence of Tris or one of a number of related amines, all of general structure: (See article). When more than one R group was hydrogen no enzyme activity was observed. 3. Only one of these amines is known to exist in living tissues and large concentrations of all amines were required for maximum activity. L-2-Aminopropan-1-ol was the most effective amine on the basis of substrate Km and Vmax. values and the amine Km values. 4. The enzyme was activated by phosphate which lowered the Km values for methylglyoxal, amine and NAD+. 5. The pH optimum of the enzyme was 9.3 and there was no activity at pH values below 7.8. A search for activators that might produce activity at pH 7.4 proved unsuccessful. 6. The enzyme was inhibited by rather large concentrations of barbiturates (6-46 mM) and nitro-alcohol analogues of the activating amines (66-139 mM).  相似文献   

13.
L J Larsson  I Bj?rk 《Biochemistry》1984,23(12):2802-2807
The mechanism of the appearance of sulfhydryl groups in alpha 2-macroglobulin in the reaction with amines was characterized by analyses of the kinetics with ammonia and methylamine. All reactions occurred under pseudo-first-order conditions in the range of pH (7.0-8.6) and amine concentration (10-600 mM) investigated. The logarithm of the pseudo-first-order rate constant increased linearly as a function of pH with a slope of unity, indicating that the unprotonated amine is the active species in the reaction. Plots of the observed pseudo-first-order rate constants vs. concentration of unprotonated amine at constant pH were also linear and gave second-order-rate constants of 0.32 and 13.8 M-1 s-1 for ammonia and methylamine, respectively, at pH 8.0; similar values were obtained at pH 8.6. Activation energies of 85 and 100 kJ mol-1 and activation entropies of 10 and 95 J K-1 mol-1 for ammonia and methylamine, respectively, were estimated from Arrhenius plots, suggesting that the higher reaction rate for methylamine is due primarily to a higher activation entropy. These results are consistent with the release of sulfhydryl groups being caused by a nucleophilic attack of the uncharged amine on a thio ester bond of alpha 2-macroglobulin in a bimolecular reaction occurring under pseudo-first-order conditions. The characteristics of the reaction suggest that the thio ester in each alpha 2-macroglobulin subunit reacts independently and equivalently with the amine and also that the thio ester bond cleavage initiates the reaction sequence leading to inactivation of the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Fluorescent labeling of primary and secondary amines using dansyl chloride has been widely used in the past. Its application provides an extremely sensitive means to detect amine functional groups to amounts of less than 1 microg of material. This work describes a method for the dansylation of hydroxyl (-OH) and carboxylic acid (-COOH) functional groups. This technique is demonstrated with ethanol, gamma hydroxy butyric acid (GHB), benzoic acid, and p-chloroaniline. Sensitivity of detection for all compounds are microgram or microliter. For the compounds ethanol and GHB which are liquids at room temperature, as little as 1 microl quantity can be detected. Benzoic acid and p-chloroaniline which are solids at room temperature can be detected at levels of 1 microg. Fast thin layer chromatography was accomplished using acetone as the resolving solvent, which resulted in good differentiation of analytes for R(f) measurement. The dansylation reaction performed similarly at pH 11, 10 and 9.6 and uses 2 molar Na(2)CO(3).  相似文献   

15.
The study of polymeric nucleic acid delivery vehicles has recently grown because of their promise for many biomedical applications. In an effort to understand how the chemical traits of polymers affect the biological mechanisms of nucleic acid delivery, we have calculated the buffering capacity in the physiological pH range of a series of 10 poly(glycoamidoamine)s with systematic structural variations in the amine stoichiometry (from 1 to 4), carbohydrate moiety (d-glucarate or l-tartarate), and amine spacer (ethylene or butylene) within their repeat units. In addition, we have compared the buffering capacity of these polymeric vectors to their polyplex (polymer-DNA complex) stability, cellular internalization, and gene expression profiles to understand the parameters that are important for increasing gene delivery efficiency. The results indicate that the buffering capacity is not always the primary characteristic that determines the gene delivery efficiency for all the poly(glycoamidoamine)s. We have found that the buffering capacity may affect the gene delivery efficiency only when analogous structures containing the same number of amines but different carbohydrates are compared. We reveal that the cellular internalization is the key step in the gene delivery process with systems containing different amine stoichiometry. Also, increasing the number of methylene groups between the secondary amines increases toxicity to a large degree. This systematic and heuristic approach of studying the correlations between structural variables and gene delivery efficiency will facilitate the development of effective synthetic vectors for specific nucleic acid delivery applications.  相似文献   

16.
Postmitochondrial fractions from marine sponges Geodia cydonium, Tethya aurantium, Verongia aerophoba and Pellina semitubulosa activate precarcinogenic aromatic amine 2-aminoanthracene, but not precarcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene, to Salmonella typhimurium TA 98 mutagens. All four sponge species lack a benzo(a)pyrene monooxygenase activity, but possesses the enzyme activity whose characteristics (selective activation of aromatic amines, NADPH-dependency, pH optimum at 8.4) are similar to FAD-containing monooxygenase. Tethya postmitochondrial fraction possesses an UDP-glucuronyl transferase activity which catalyzes the conjugation of a considerable part of metabolized 2-acetylamino [9-14C]fluorene to water soluble glucuronides. The possible ecological significance of exuded aromatic amine metabolites as well as the significance of the presence of the selective potential for the activation of aromatic amines to mutagens among sponges for our understanding of the fate and effects of carcinogens in the marine environment are discussed.  相似文献   

17.
Tris and two of its hydroxylated amine analogs were examined in a metal-free, universal n-butylamine buffer, for their interaction with intestinal brush border sucrase. Our recent three-proton-families model (Vasseur, van Melle, Frangne and Alvarado (1988) Biochem. J., 251, 667-675) has provided the sucrase pK values necessary to interpret the present work. At pH 5.2, 2-amino-2-methyl-l-propanol (PM) causes activation whereas Tris has a concentration-dependent biphasic effect, first causing activation, then fully competitive inhibition. The amine species causing activation is the protonated, cationic form. The difference between the two amines is related to the fact that Tris has a much lower pKa value than PM (respectively, 8.2 and 9.8). Even at pH 5.2, Tris (but not PM) exists as a significant proportion of the free base which, by inhibiting the enzyme fully competitively, overshadows the activating effect of the cationic, protonated amine. Above pH 6.8, both Tris and PM act as fully competitive inhibitors. These inhibitions increase monotonically between pH 6.5 and 8.0 but, above pH 8, inhibition by 2.5 mM Tris tends to diminish whereas inhibition by 40 mM PM increases abruptly to be essentially complete at pH 9.3 and above. As pH increases from 7.6 to 9.0, the apparent affinity of the free amine bases decreases whereas that of the cationic, protonated amines, increases. In this way, the protonated amines replace their corresponding free bases as the most potent inhibitors at high pH. The pH-dependent inhibition by 300 mM Li+ is essentially complete at pH 8, independent of the presence or absence of either 2.5 mM Tris or 40 mM PM. Even at pH 7.6, an excess (300 mM) of Li+ causes significant increases in the apparent Ki value of each Tris, PD (2-amino-2-methyl-1-3-propanediol) and PM, suggesting the possibility of a relation between the effects of Li+ and those of the hydroxylated amines which in fact are mutually exclusive inhibitors. The inhibitory results are interpreted in terms of a mechanistic model in which the free bases bind at two distinct sites in the enzyme's active center. Binding at the glucosyl sub-site occurs through the amine's free hydroxyl groups. This positioning facilitates the interaction between the lone electron pair of the deprotonated amino group with a proton donor in the enzyme's active center, characterized by a pK0 around 8.1. When this same group deprotonates, then the protonated amines acting as proton donors replace the free bases as the species giving fully competitive inhibition of sucrase.  相似文献   

18.
To preserve the nucleophilicity of amino compounds during conjugative radioiodination, a new method for converting primary amines to phenolic secondary amines was developed. Amino acids were used as model compounds for establishing optimal conditions for the reductive amination. In the first step of the reaction, the aldehyde group of 4-hydroxybenzaldehyde (formylphenol) was reacted reversibly with an amino group to form an imine. The irreversible attachment of formylphenol to the amino group was accomplished by reduction of the imine with sodium cyanoborohydride. The pH optimum for the reaction was 5.0. Higher temperature has favorable effects on the rate and extent of the conjugation. Phenolic derivatives of amino compounds suitable for radioiodination are produced by the reactions described.  相似文献   

19.
Glucagon was immobilized onto Sepharose matrices activated with CNBr or tresyl chloride, as a function of several parameters including pH of coupling, concentration of added polypeptide, and presence or absence of urea. The hormone was linked to the matrix through a single point per molecule, namely, the epsilon -amino group of Lys(12) when the coupling was carried out at alkaline pH, or the imidazole group of His(1) when the coupling was carried out at acidic pH. Glucagon immobilized at alkaline pH interacted specifically with soluble glucogon. The extent of self-association was similar to that of free glucagon, which exists in solution in a monomer-trimer equilibrium whose association constant is highly dependent on the characteristics of the buffer (pH, ionic strength, and nature of anions). The immobilized hormone proved to be suitable for the purification of the free one from a pancreatic extract. After a preliminary treatment with charcoal-dextran, the extract was percolated on a glucagon-Sepharose column under associating conditions (high concentrations of salting out anions and alkaline pH) and then, following a washing to remove extraneous compounds, the specifically bound hormone was eluted under dissociating conditions (low ionic strength). The subunit exchange chromatography of the extract gave a ca. 90% pure product. The overall recovery of the process was ca. 66%. The leakage of immobilized hormone was 40% in the case of CNBr activation of Sepharose and 15% in the case of tresyl chloride activation, after an eight-day treatment under working conditions.  相似文献   

20.
For the simultaneous synthesis of enatiomerically pure (S)-amino acids and (R)-amines from corresponding alpha-keto acids and racemic amines, an alpha/omega-transaminase coupled reaction system was designed using favorable reaction equilibrium shift led by omega-transaminase reaction. Cloned tyrB, aspC and avtA, and omegataA were co-expressed in E. coli BL21(DE3) using pET23b(+) and pET24ma, respectively. The coupled reaction produced the (S)-amino acids with 73-90% (> 99% ee(S)) of conversion yield and resolved the racemic amines with 83-99% ee(R) for 5 to 10 hours. In designing the coupled reactions in the cell, alanine and pyruvate were efficiently used in the cell as an amine donor for the alanine transaminase and an amino acceptor for the omega-transaminase, respectively, resulting in an alanine-pyruvate shuttling system. The common problem of the low equilibrium constant of the alpha-transaminase can be efficiently overcome by the coupling with the omega-transaminase. However, overcoming the product inhibition of omega-transaminase by the ketone by-product and increasing the decarboxylation rate of the oxaloacetate produced during the transaminase reaction become barriers to further improving the overall reaction rate and the yield of the coupled reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号