首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used site-directed mutagenesis to determine whether the structural context surrounding the AUG triplet influences its ability to be selected as an initiation codon by the eukaryotic preinitiation complex. AUG triplets were introduced in a loop and stem structure naturally occurring at the midpoint of the 129-nucleotides-long 5'-untranslated region of the porcine proopiomelanocortin mRNA; one AUG triplet was inserted in the loop while another was inserted in the stem of the hairpin structure. The proopiomelanocortin cDNA and the mutant cDNAs were inserted downstream from the early promoter of an expression vector derived from simian virus 40 (SV40) and transfected into monkey kidney COS-1 cells. Analysis of the proopiomelanocortin-related peptides present in the culture medium 72 h after transfection revealed that both mutant cDNAs direct the synthesis of more proopiomelanocortin than the non-mutant cDNA. The increased translational efficiency observed with both mutants is probably due to the decreased secondary structures of the shortened 5'-untranslated region. In addition, comparison of the two mutants indicates that the mutant mRNA with the AUG triplet inserted in the loop region of the hairpin structure directs the synthesis of approximately 75% more proopiomelanocortin than the mutant mRNA with the AUG triplet inserted in the stem region of the same hairpin structure, supporting a role for the structural context in the efficiency of translational initiation.  相似文献   

2.
Transient translational silencing by reversible mRNA deadenylation.   总被引:26,自引:0,他引:26  
  相似文献   

3.
Gene 6 mRNA of Bacillus subtilis phage phi 29 is inefficiently translated under standard in vitro conditions by Escherichia coli, while it is efficiently translated by the in vitro system derived from B. subtilis. This is a rare example of the inability of E. coli to translate mRNA translated by B. subtilis. The ionic condition in the translation systems was the key component in the differential recognition of the gene 6 message by E. coli and B. subtilis ribosomes. Its translation by E. coli ribosomes was preferentially inhibited by moderate levels of KCl, while its translation by B. subtilis ribosomes was unaffected by these concentrations of salt. This preferential inhibition with E. coli ribosomes was observed in vitro as well as in vivo. While not influencing the general phenomenon of preferential inhibition, anion-specific effects were observed in overall protein synthesis. Glutamate and acetate promoted efficient synthesis over a broad range of concentrations, whereas chloride was inhibitory at all concentrations tested.  相似文献   

4.
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon-tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology.  相似文献   

5.
6.
The archaeal origins of the eukaryotic translational system   总被引:1,自引:0,他引:1  
Among the 78 eukaryotic ribosomal proteins, eleven are specific to Eukarya, 33 are common only to Archaea and Eukarya and 34 are homologous (at least in part) to those of both Bacteria and Archaea. Several other translational proteins are common only to Eukarya and Archaea (e.g., IF2a, SRP19, etc.), whereas others are shared by the three phyla (e.g., EFTu/EF1A and SRP54). Although this and other analyses strongly support an archaeal origin for a substantial fraction of the eukaryotic translational machinery, especially the ribosomal proteins, there have been numerous unique and ubiquitous additions to the eukaryotic translational system besides the 11 unique eukaryotic ribosomal proteins. These include peptide additions to most of the 67 archaeal homolog proteins, rRNA insertions, the 5.8S RNA and the Alu extension to the SRP RNA. Our comparative analysis of these and other eukaryotic features among the three different cellular phylodomains supports the idea that an archaeal translational system was most likely incorporated by means of endosymbiosis into a host cell that was neither bacterial nor archaeal in any modern sense. Phylogenetic analyses provide support for the timing of this acquisition coinciding with an ancient bottleneck in prokaryotic diversity.  相似文献   

7.
The genomic RNA of beet western yellows virus (BWYV) contains a potential translational frameshift signal in the overlap region of open reading frames ORF2 and ORF3. The signal, composed of a heptanucleotide slippery sequence and a downstream pseudoknot, is similar in appearance to those identified in retroviral RNAs. We have examined whether the proposed BWYV signal functions in frameshifting in three translational systems, i.c. in vitro in a reticulocyte lysate or a wheat germ extract and in vivo in E. coli. The efficiency of the signal in the eukaryotic system is low but significant, as it responds strongly to changes in either the slip sequence or the pseudoknot. In contrast, in E. coli there is hardly any response to the same changes. Replacing the slip sequence to the typical prokaryotic signal AAAAAAG yields more than 5% frameshift in E. coli. In this organism the frameshifting is highly sensitive to changes in the slip sequence but only slightly to disruption of the pseudoknot. The eukaryotic assay systems are barely sensitive to changes in either AAAAAAG or in the pseudoknot structure in this construct. We conclude that eukaryotic frameshift signals are not recognized by prokaryotes. On the other hand the typical prokaryotic slip sequence AAAAAAG does not lead to significant frameshifting in the eukaryote. In contrast to recent reports on the closely related potato leafroll virus (PLRV) we show that the frameshifting in BWYV is pseudoknot-dependent.  相似文献   

8.
9.
10.
Computational modeling of eukaryotic mRNA turnover   总被引:6,自引:2,他引:6       下载免费PDF全文
Cao D  Parker R 《RNA (New York, N.Y.)》2001,7(9):1192-1212
  相似文献   

11.
Multiple determinants of eukaryotic mRNA stability   总被引:37,自引:0,他引:37  
Regulated changes in mRNA stability play an important role in modulating the level of expression of many eukaryotic genes. In several systems, specific sequence determinants that dictate mRNA instability have been identified. Thus, the presence of instability determinants, and not the absence of sequences that dictate stability, appears to be required for regulated mRNA degradation. These instability determinants presumably interact with specific nucleases or other trans-acting factors that regulate the accessibility of the domain to nucleases. Although each RNA destabilization pathway has unique features, in many cases RNA degradation requires ongoing protein synthesis. In some of the systems discussed, the mRNAs are degraded co-translationally, perhaps by a ribosome-associated ribonuclease. For other messages, the mechanistic reasons for the dependence of mRNA degradation on ongoing protein synthesis are still unknown.  相似文献   

12.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   

13.
Ca2+ has been recently reported to be required for high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). In the present investigation low concentrations of the Ca2+ ionophores, A23187 and ionomycin, were found to rapidly suppress the Ca2+-dependent component of protein synthesis in GH3 cells. More ionophore was required to inhibit amino acid incorporation into protein as extracellular Ca2+ was increased. Pre-existing inhibitions of protein synthesis produced by low concentrations of ionophore at low extracellular Ca2+ concentrations were reversed by adjustment to high extracellular Ca2+. Treatment with ionophore reduced the cellular contents of polysomes and 43 S preinitiation complex to values equivalent to those found for Ca2+-depleted cells. Average ribosomal transit times were unaffected by ionophore, and treated cells retained the ability to accumulate polysomes when incubated with cycloheximide. Cell types, such as HeLa and Chinese hamster ovary, that normally display only a modest Ca2+-dependent component of protein synthesis, manifested a strong underlying Ca2+ dependence in amino acid incorporation and polysome formation following treatment with low concentrations of ionophore. Protein synthesis in GH3 or HeLa cells during recovery from heat shock and arsenite treatment was not affected by cellular Ca2+ depletion or ionophore treatment. On the basis of these results, Ca2+ ionophore is proposed to inhibit Ca2+-dependent translational initiation through facilitating the mobilization of sequestered intracellular Ca2+.  相似文献   

14.
Translation of an mRNA encoding a selenoprotein requires that at least one UGA codon in the reading frame is recoded as a site for the insertion of selenocysteine. In eukaryotes, the termination codon recoding event is directed by a cis-acting signal element located in the 3' untranslated region of the gene. This 'selenocysteine insertion sequence' (SECIS) comprises conserved sequences in a region of extensive base-pairing. In order to study the structure-function relationships of the SECIS structure, we have applied a newly developed reporter gene system which allows analysis of stop codon suppression in animal cell lines. This system obviates the need for enzymatic or immunological estimation of selenoprotein synthesis, relying instead on the simple quantification of translational readthrough from the lacZ gene into the luciferase gene. The 3'-UTR of the phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene was shown to contain a highly active SECIS element. Mutations in the base-paired sequences of other SECIS elements were used to analyse the significance of primary structure, secondary structure and pairing stability in the stem regions. The results demonstrate that the exact sequences of the paired nucleotides are comparatively unimportant, provided that a consensus combination of length and thermodynamic stability of the base-paired structures is maintained.  相似文献   

15.
Ribosome pausing and stacking during translation of a eukaryotic mRNA.   总被引:56,自引:3,他引:56       下载免费PDF全文
S L Wolin  P Walter 《The EMBO journal》1988,7(11):3559-3569
We have devised a sensitive assay to determine the distribution of translating ribosomes on a mRNA. Using this assay to monitor ribosome transit on bovine preprolactin mRNA, we have detected four major positions of ribosome pausing in both wheat-germ and rabbit reticulocyte extracts. Two of these rate-limiting steps represent initiation and termination. One pause occurs after approximately 75 amino acids have been polymerized; signal recognition particle arrests preprolactin synthesis at this position. The other internal pause occurs at 160 amino acids. In these latter two cases ribosomes stop at a GGC glycine codon; however, two other GGC codons are translated without apparent pausing. Surprisingly, we find that up to nine ribosomes are tightly stacked behind each pausing ribosome, such that the ribosome centers are only 27-29 nucleotides apart. The assay should prove useful for probing mechanisms of translational regulation.  相似文献   

16.
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

17.
mRNA degradation machines in eukaryotic cells   总被引:13,自引:0,他引:13  
Tourrière H  Chebli K  Tazi J 《Biochimie》2002,84(8):821-837
  相似文献   

18.
A general program was written which simulates radioactive labeling of RNA in vivo. The program was used to determine the effect that different distributions of half-lives would have on the composite decay curve observed in a pulse-chase experiment. Four biologically relevant points emerge: 1) The published, experimentally determined composite decay curves for eukaryotic mRNA are not compatible with a normal, uniform, or exponential distribution of decay times. 2) The experimental curves are compatible with a lognormal distribution of decay times as well as the two-component discrete distribution previously hypothesized. 3) If the lognormal or some similar distribution were correct, about half the mRNA species would decay faster than what is presently called the “fast component of decay”. This point is crucial to any argument about the fraction of poly (A) or other nuclear sequence that is transported to the cytoplasm. 4) If a particular mRNA species is found to decay at a constant rate for 3 half-lives, that is not only consistent with 1 half-life for all the mRNA, but also consistent with 20 different half-lives which are normally or uniformly distributed.In addition to the decay of mRNA, the lognormal distribution is also compatible with data on the decay of poly(A)-containing nuclear RNA and total cellular protein.  相似文献   

19.
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.  相似文献   

20.
Translation initiation in eukaryotes is facilitated by the cap structure, m7GpppN (where N is any nucleotide). Eukaryotic translation initiation factor 4F (eIF4F) is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. eIF4G interacts directly with eIF4E and eIF4A. The binding site of eIF4E resides in the N-terminal third of eIF4G, while eIF4A and eIF3 binding sites are present in the C-terminal two-thirds. Here, we describe a new eukaryotic translational regulator (hereafter called p97) which exhibits 28% identity to the C-terminal two-thirds of eIF4G. p97 mRNA has no initiator AUG and translation starts exclusively at a GUG codon. The GUG-initiated open reading frame (907 amino acids) has no canonical eIF4E binding site. p97 binds to eIF4A and eIF3, but not to eIF4E. Transient transfection experiments show that p97 suppresses both cap-dependent and independent translation, while eIF4G supports both translation pathways. Furthermore, inducible expression of p97 reduces overall protein synthesis. These results suggest that p97 functions as a general repressor of translation by forming translationally inactive complexes that include eIF4A and eIF3, but exclude eIF4E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号