首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Although mussel beds are common in many intertidal habitats, the ecological significance of the aggregated distribution of mussels has not been examined. The ribbed mussel, Geukensia demissa, is found in dense aggregations on the seaward margin of many salt marshes in New England. Here, we examine the population structure of G. demissa in a New England salt marsh and investigate experimentally the costs and benefits of aggregation.Size, growth rate, and settlement rates of mussels decrease with increasing tidal height, whereas survivorship and longevity increase with increasing tidal height. Winter ice dislodges mussels from the substratum, resulting in mortality over all size classes, whereas crab predation results in the mortality of smaller mussels. The intensity of each of these mortality agents decreases with increasing tidal height. Effects of intraspecific competition on individual growth and mortality also decrease with increasing tidal height.At high densities, individual growth rates were reduced, with depression of growth rates most pronounced on smaller individuals. Mortality from sources other than intraspecific crowding, however, was reduced at high mussel densities, including mortality due to winter ice and crab predators. As a result, our data suggest that the mussel population at our study site would be reduced by 90% in only five years and no juveniles would survive through their second year without an aggregated distribution.Juveniles settle gregariously with or without adults present. The aggregated distribution of settlers and the postsettlement movement of smaller mussels to favorable microhabitats result in size and age class segregation within the population. This probably reduces intraspecific competition for food, while maintaining the survivorship advantages of an aggregated distribution.  相似文献   

2.
We studied the competitive effects within and between two taxonomically distant freshwater herbivores, a snail and a mayfly, common in Swedish lakes, Lymnaea peregra and Cloeon dipterum, respectively, and their effect on grazing in a laboratory experiment. The experimental set-up consisted of 2-l aquaria, each containing a periphyton covered tile. Intra- and interspecific effects were tested by increasing the density of one species at a time in four different treatments, (1) snails (intraspecific treatment), (2) mayflies (intraspecific treatment), (3) mixed-snails (interspecific treatments, snails kept constant) and (4) mixed-mayflies (interspecific treatments, mayflies kept constant). Intraspecific competition affected both snails and mayflies negatively, i.e. increasing mortality with increasing con-specific density. Furthermore, there was a decrease in snail growth with increasing snail density. In the mixed-species treatments both species changed their microhabitat use indicating interspecific competition. Despite this, we also found a positive effect of mayfly density on snail growth, most likely due to indirect commensalism. No density-dependent effect of grazing on periphyton was found, probably due to interference competition between grazers. However, there was a significant difference in periphyton biomass, due to species composition of grazers. Irrespective of their densities, if they co-existed, the two grazer species decreased the periphyton biomass significantly compared with both single-species treatments. We considered this as a joint action of facilitation and interaction. Our results suggest that competition can be an important structuring factor in macroinvertebrate communities and that species composition can be significant for ecosystem processes within lentic environments.  相似文献   

3.
Summary Larvae of the burrowing clam Tridacna crocea (Tridacnidae) settle preferentially on top of detached coral heads lying on the surface of the interior reef flat in the Great Barrier Reef province. This species burrows as it grows, eroding the central top surfaces of coral boulders, producing structures that superficially resemble micro-atolls. Storm surges roll these coral heads onto the now flattened surface, killing the live population of clams, and exposing the fresh underside for unimpeded larval settlement. As these clams grow and burrow into the substratum, the coral head becomes progressively flattened and finally breaks apart. Field observations and growthring data documented growth rate; growth rates plus burrow volumes were converted to annual sediment production. At average population densities approximately 140 gm/m2/yr of coral are eroded. Concomitant with erosion is a calcium carbonate increase in the shell of these clams amounting to 60gm/m2/yr. Assuming a stable population structure, with annual mortality equal to annual estimated growth, total sediment production is 200 gm/m2/yr. Clams are usually aggregated at higher densities, however, with numbers regularly exceeding 100 clams/m2. Consequently maximum sediment production rate locally is often 4,500 gm/m2/yr.  相似文献   

4.
Models of competitor coevolution, especially the genetic feedback hypothesis, suggest that a negative correlation between intraspecific and interspecific competitive effects may be important in sustaining competitor coexistence, and can give rise to oscillatory dynamics with repeated reversals of competitive superiority. I reanalyzed previously published census data from an experiment in which populationsof Drosophila melanogaster andD. simulans underwent competitive coevolution in one familiar and two novel environments, to specifically look for any evidence of a negative relationship between intraspecific and interspecific competitive effects on population growth rates, and for any indication of short period cycling in the relative magnitude of intraspecific and interspecific competitive effects. While there was considerable variation in the relative magnitude of intraspecific and interspecific competitive effects over generations, among both populations and environments, there was no clear evidence supporting the genetic feedback hypothesis. Intraspecific and interspecific competitive effects on population growth rates were strongly positively correlated in novel environments, and uncorrelated in the familiar environment. Data from the familiar environment indicated that indices of competition of populations of the initially superior competitor,D. melanogaster, might be showing some cyclic behaviour, but I argue that this is likely to be transient, and not suggestive of sustained oscillatory dynamics predicted by the genetic feedback model. I discuss the results in the context of the importance of the genetic architecture of intraspecific and interspecific competitive abilities in determining the coevolutionary trajectory of competitive interactions.  相似文献   

5.
Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, Mantella aurantiaca, Mantella crocea, and Mantella milotympanum. Although our restriction site‐associated DNA (RAD) sequencing approach identified clear genetic clusters, they do not align with current species designations, which has important conservation implications for these imperiled frogs. Moreover, our results suggest that levels of intraspecific color variation within this group have been overestimated, while species diversity has been underestimated. Within major genetic clusters, we observed distinct patterns of variation including: populations that are phenotypically similar yet genetically distinct, populations where phenotypic and genetic breaks coincide, and populations that are genetically similar but have high levels of within‐population phenotypic variation. We also detected admixture between two of the major genetic clusters. Our study suggests that several mechanisms—including hybridization, selection, and drift—are contributing to phenotypic diversity. Ultimately, our work underscores the need for a reevaluation of how polymorphic and polytypic populations and species are classified, especially in aposematic organisms.  相似文献   

6.

Background

Disruptive selection has been documented in a growing number of natural populations. Yet, its prevalence within individual systems remains unclear. Furthermore, few studies have sought to identify the ecological factors that promote disruptive selection in the wild. To address these issues, we surveyed 15 populations of Mexican spadefoot toad tadpoles, Spea multiplicata, and measured the prevalence of disruptive selection acting on resource-use phenotypes. We also evaluated the relationship between the strength of disruptive selection and the intensity of intraspecific competition??an ecological agent hypothesized to be an important driver of disruptive selection.

Results

Disruptive selection was the predominant mode of quadratic selection across all populations. However, a directional component of selection favoring an extreme ecomorph??a distinctive carnivore morph??was also common. Disruptive selection was strongest in populations experiencing the most intense intraspecific competition, whereas stabilizing selection was only found in populations experiencing relatively weak intraspecific competition.

Conclusions

Disruptive selection can be common in natural populations. Intraspecific competition for resources may be a key driver of such selection.  相似文献   

7.
Abstract:  The intraspecific and interspecific competition among the adults of three common grasshoppers, Angaracris rhodopa (Fischer-Waldheim), Chorthippus dubius (Zubovsky) and Chorthippus fallax (Zubovsky) was investigated on Ganjia High Mountain Grassland in north-west China. The results indicated a strong intraspecific competition within species at high densities. The interspecific competition between the larger-sized species, A. rhodopa , and the smaller-sized species, C. dubius or C. fallax , was weak, while competition between C. dubius and C. fallax was strong. An asymmetric competitive interaction in mortality and fecundity associated with the diet and size was observed among the three species. Competition was strong between the two species that had a similar diet. The large-sized species had higher mortality rates and lower fecundity than the smaller-sized species. Intraspecific competition between the three species was mainly affected by food limitation, while interspecific competition was mainly associated with food limitation as well as the grasshoppers' adaptation to the environment.  相似文献   

8.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

9.
European agri-environment schemes encourage farmers to establish sown field margin strips to protect and enhance wild plant diversity. However, plant diversity in such wild plant sowings based on seed mixtures is often low due to the high competitiveness of few, common species. Here we analysed whether intraspecific aggregation could enhance the performance of less competitive species, and how plant performance is influenced by the number of species in a mixture. We focused on inter- and intraspecific competition between six agricultural wild plant species (Centaurea cyanus, Calendula arvensis, Melilotus officinalis, Poa annua, Bromus mollis, Medicago lupulina), and tested (i) two different seeding patterns (intraspecifically aggregated vs. randomly dispersed) and (ii) three different species mixtures (monocultures, three-species, and six-species mixtures). Plant performance was measured in terms of number of individuals, biomass per individual, and biomass per m2. Intraspecific aggregation resulted in higher numbers of individuals of all species, while mixtures generated lower numbers of individuals. The performance of plant species differed depending on their position in the competitive hierarchy. Competitively weak species suffered much less from intraspecific than interspecific competition in terms of biomass, and the competitively weakest species became even excluded in the most species rich and randomly dispersed sowings with high interspecific competition. In conclusion, the performance of wild plant species was influenced by both seeding pattern and number of species in a mixture. Intraspecific aggregation enabled the coexistence of competitively weak species by reducing interspecific competitive exclusion processes. Consequently, agri-environmental schemes designed to preserve and enhance biodiversity should consider small-scale processes influencing the distribution and abundance of plants, and develop new agricultural sowing technologies to cultivate competitively weak and endangered wild plant species.  相似文献   

10.
Intraspecific competition is common in many organisms. For many sessile marine invertebrates high settlement densities can lead to competition with conspecifics that can affect the probability of mortality, morphology, and reproductive output. This work aims to determine the affect of recruit density on shell morphology and fecundity and the temporal nature of intraspecific competition for the acorn barnacle, Semibalanus balanoides . Two tile arrays were used; experiment 1 was deployed at the start of the settlement season (43,264 recruits, 4.1% survivorship to adult), experiment 2 was deployed in the middle of the season (5,454 recruits, 42.8% survivorship). Experiment 2 displayed density dependent mortality between recruits and juveniles and adults, whereas no relationship was found for exp. 1. Experiment 2 had higher egg production per individual, but also higher egg production per area of tile compared to exp. 1. A negative relationship was found between recruit density and egg production, however during the summer period, this relationship switched to a positive relationship between juvenile density and egg production, due to high mortality on tiles with high recruit density. Cumulative population density (CPD) was calculated as the cumulative mean density of barnacles per cm-2 of tile and was used as an index of intraspecific competition. There was a linear negative relationship between mass of eggs per individual and CPD. However, CPD over the summer period more fully explained egg production per individual. A time window was identified when cumulative intraspecific competitive effects were shown to have a strong negative effect on egg production and an increase in mortality, causing a flip from density independent fecundity to density dependent fecundity. These results suggest that recruit density is an important driver of subsequent population processes.  相似文献   

11.
Intraspecific aggression represents a major source of mortality for many animals and is often experienced alongside the threat of predation. The presence of predators can strongly influence ecological systems both directly by consuming prey and indirectly by altering prey behavior or habitat use. As such, the threat of attack by higher level predators may strongly influence agonistic interactions among conspecifics via nonconsumptive (e.g., behaviorally mediated) predator effects. We sought to investigate these interactions experimentally using larval salamanders (Ambystoma maculatum) as prey and dragonfly nymphs (Anax junius) as predators. Specifically, we quantified salamander behavioral responses to perceived predation risk (PPR) from dragonfly nymphs and determined the degree to which PPR influenced intraspecific aggression (i.e., intraspecific biting and cannibalism) among prey. This included examining the effects of predator exposure on the magnitude of intraspecific biting (i.e., extent of tail damage) and the resulting change in performance (i.e., burst swim speed). Salamander larvae responded to PPR by reducing activity and feeding, but did not increase refuge use. Predator exposure did not significantly influence overall survival; however, the pattern of survival differed among treatments. Larvae exposed to PPR experienced less tail damage from conspecifics, and maximum burst swim speed declined as tail damage became more extensive. Thus, escape ability was more strongly compromised by intraspecific aggression occurring in the absence of predation risk. We conclude that multitrophic indirect effects may importantly modulate intraspecific aggression and should be considered when evaluating the effects of intraspecific competition.  相似文献   

12.
13.
The influence of spatial distribution pattern on the outcomes of intra- and interspecific competition is studied theoretically. The models developed are the generalized logistic andVolterra equations, whereLloyd 's indices of intra- and interspecies mean crowding were incorporated with their assumed linear relationship to mean density in order to express the intensity of crowding which is really effective to the existing individuals. It is shown that while the increasing patchiness of distribution has a pronounced effect of promoting the intraspecific competition and lowering the equilibrium density for individual populations, it generally relaxes the interspecific competition, making it easy for different species sharing the same niche, which would otherwise be incompatible, to coexist stably. These models thus provide a simplest theoretical basis to explain why many insect populations in nature are kept relatively rare in number and why a number of allied species often coexist freely sharing the same resource, against the “competitive exclusion principle” deduced from the originalVolterra equations.  相似文献   

14.
Mark A. Steele 《Oecologia》1998,115(1-2):222-232
Competition and predation may both strongly influence populations of reef fishes, but the importance of these processes relative to one another is poorly understood. I quantified the effects of predation and competition on the growth and survival of two temperate reef fishes, Lythrypnus dalli and Coryphopterus nicholsii, in field experiments in which I manipulated the densities of the two species and the abundance of predators (using exclosure cages) on small replicate patch reefs. I also evaluated the influence of predators on the behavior of the two species to help interpret the mechanisms of any predatory influences on growth or survival. Predation was much more important than competition (inter- or intraspecific) in Lythrypnus. For Coryphopterus, neither competition nor predation were particularly important. Behaviorally, both species responded to predators by reducing foraging rate and hiding. This altered behavior, however, had no repercussions for growth or survival of Coryphopterus. In contrast, Lythrypnus grew more slowly and suffered greater mortality when exposed to predators. Interspecific competition did not significantly influence either species. Intraspecific competition did not affect the growth of Coryphopterus, but survival tended to be lower at high densities. Growth of Lythrypnus was depressed by intraspecific competition, but survival was not, except that, in the presence of predators, survival was density dependent. In contrast to the historical emphasis placed on the role of competition, this study indicates that predation can be more important than competition in determining patterns of abundance of some reef fishes. For example, predators not only influenced foraging of both Lythrypnus and Coryphopterus, but they also reduced growth and survival of Lythrypnus, and therefore appear to help maintain the marked habitat segregation between the two species. Received: 16 June 1997 / Accepted: 3 December 1997  相似文献   

15.
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size‐related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.  相似文献   

16.
Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life‐history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste‐ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste‐ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste‐ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.  相似文献   

17.
John L. Maron 《Oikos》2001,92(1):178-186
High mortality of plants growing in dense monospecific stands (i.e. self-thinning) usually results from intense intraspecific competition. However, inconspicuous below-ground insect herbivory might be a potent but overlooked source of mortality within dense stands of plants, particularly if crowding limits a plant's ability to compensate for herbivore damage. Here I ask how high conspecific density influences a plant's ability to cope with heavy below-ground insect herbivory.
I manipulated conspecific density and exposure to an abundant root-borer, the ghost moth ( Hepialus californicus ), and examined the impacts on the fecundity, growth, and survival of bush lupine ( Lupinus arboreus ), a fast-growing shrub that grows in dense monospecific stands in coastal grasslands. Both herbivory and intraspecific competition affected seed production, size, and mortality of bush lupine over the two years of the experiment. Plants consistently produced fewer seeds when growing at high versus low density and ghost moth herbivory also significantly reduced seed production. The negative effects of herbivory on plant fecundity were similar, regardless of plant density. In contrast, plant survival was affected by both competition, herbivory, and the interaction of these factors. In high density plots, plant survival was uniformly low (averaging 0.45–0.50); plants exposed to herbivores died from heavy herbivory, and plants protected from herbivores died due to intense intraspecific competition that compensated for losses due to herbivory. In low density plots, ghost moth herbivory similarly reduced lupine survival, from an average survival probability of 0.94 in plots protected from these herbivores to 0.55 in plots exposed to herbivory. Thus, results show that regardless of plant density, below-ground herbivory can be a potent source of mortality.  相似文献   

18.
1. Predation risk affects interspecific competition by decreasing foraging activity and relative competitive ability. Predation risk is determined by predators' prey choice and prey responses, both of which can be influenced by temperature. Temperature is especially important for larval prey and can result in a trade‐off between predator‐induced decreases in foraging activity and growth. Interspecific competition must also be examined in relation to intraspecific density‐dependent competition; weaker interspecific competition leads to coexistence of competitors. 2. This study explored how temperature (15 and 25 °C) could affect a focal species, larvae of the mosquito Culex quinquefasciatus, by examining prey choice in a shared predator (mosquitofish; Gambusia holbrooki) and the effects of predation risk on interspecific competition with Limnodynastes peronii tadpoles. Intraspecific density‐dependent competition in C. quinquefasciatus at these temperatures was also examined. 3. At 25 °C, G. holbrooki consumption of both C. quinquefasciatus and L. peronii increased; however, the effects of interspecific competition on mosquito survival did not decrease with L. peronii exposure to predation risk. The relationship between intraspecific density‐dependent competition and interspecific competition was temperature‐dependent, with competitive dominance of L. peronii at 25 °C. Male and female mosquitoes had different temperature‐dependent responses, indicating sex‐specific intrinsic responses to starvation and differential selection pressures. At 25 °C, females were susceptible to interspecific competition by L. peronii, while males were susceptible to intraspecific competition. 4. The use of competitors as biological controls has implications for mosquito disease transmission, and these results suggest that control effectiveness may be modified by climate change.  相似文献   

19.
An important requirement for the management of invasive species is to identify the biological and ecological factors that influence the ability of such species to become established and spread within a new environment. Although competition is one of the key interactions determining the coexistence of species and exclusion, few studies directly examine the mechanism of competitive interactions within invasive communities. This study focused on putative competition in a social insect invader, R. flavipes, an American termite introduced into France, and an indigenous European termite, R. grassei. We first characterized and mapped a zone of sympatry between these two species. We then evaluated the degree of direct and indirect competition by comparing several life-history traits: behavioral aggression, chemical recognition and dispersion modes. Interspecific competition revealed that R. flavipes was dominant over R. grassei. Intraspecific competition was not found in R. flavipes while it appeared in varying degrees in R. grassei. These findings seemed to be correlated with the remarkable chemical homogeneity found in R. flavipes in comparison with R. grassei. Genetic analyses revealed that R. flavipes foraged over a greater distance than R. grassei colonies and might suggest a difference in the capacity to produce secondary reproductives. These findings suggest that R. flavipes has a significant advantage owing to competitive asymmetry that may enable the species to become dominant. The interspecific superiority, lack of intraspecific aggression and large extensive colonies, seem to be some of the reasons for its invasive success.  相似文献   

20.
Intraspecific variation in body size is common in animals and plants. Body size affects trophic interactions like foraging ability and vulnerability to predation, which in turn affect individual fitness as well as population stability and extinction risk. Experimental and theoretical work has shown that the size distribution of individuals within cohorts is strongly influenced by intraspecific competition for resources, often leading to skewed frequency distributions. However, little is known about the effects of environmental factors such as climate and eutrophication on the cohort size‐structure of natural populations. We use a long‐term time series of scientific monitoring of a freshwater fish (European perch Perca fluviatilis) to investigate the effects of density dependence, predation, nutrient availability, climate and the timing of spawning on the cohort size distributions. We find that the mean length of the fish is best predicted by the extrinsic factors phosphorus concentration and summer temperature, and the densities of the different age‐classes, whereas the skewness of the length distribution is best predicted by phosphorus concentration, summer temperature, abundance of small fish, and the timing of spawning. Higher nutrient levels, temperatures and densities of small fish increase food availability and thus reduce competition, which is reflected in increased mean length and decreased skewness. The timing of spawning affects skewness presumably through changes in the initial size variation of the cohort and the length of the first growth season. Our results indicate that higher temperatures increase the mean length and decrease skewness due to the concurrent eutrophication of the lake. The study thereby highlights the potential impact of human‐induced environmental change on the size structure of fish populations. More studies are needed to understand better the complex mechanisms through which these factors alter the intensity of intraspecific competition in fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号